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On the fracture of highway pavements 

S I - T S A I  L I N  and E. S. F O L I A S  
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A B S T R A C T  
Using a model of a single layered foundation to describe a highway or an airfield pavement and an integral formulation, 
the problem of a pavement containing on-the-top layer a crack of finite length 2c is solved for the stress distribution 
around the crack tip. The analysis shows that the stresses possess the usual 1/e ½ singular behavior which is character- 
istic of crack problems. Furthermore, it is found that the stress intensity factor decreases as the magnitudes of the two 
foundation parameters increase. Finally, as the foundation presents more resistance to shear deformation, the critical 
load for crack initiation increases. 

Nomenclature 

2¢ 

D 
E, Es 
G 
Y, V s 

Yv, Ys 
h 
H 

g 
q (x, y) 

Po 
V(y c), ~P) 

MI° ,  MIv) 
W(x ,  y) 

y) 

y) 

r*, 6*, m*, r, 

= crack length 
= Eha/[12(1 - v2)] = flexural rigidity of a plate 
= Young's  modulus of plate and elastic foundation, respectively 
= shear modulus of plate 
= Poisson's ratio of plate and elastic foundation, respectively 
= specific weights of plate and elastic foundation, respectively 
= thickness of the plate 
= thickness of the foundation 
= the vertical displacement function of the elastic foundation and $ (0) = 1 
= gravitational acceleration 
= lateral load 
= load intensity of  the concentrated loads 

= shear forces as defined in text 

= bending moments  as defined in text 
= transverse deflection of a plate in bending 
= transverse deflection of a continuous plate which has not been weakened 

by the crack 
= transverse deflection of a plate involving perturbations induced by the 

presence of the crack 
= limr_.o+ Wt°(x, y), WtS)=limy-.o - WtO(x, y) 
= generalized elastic characteristic constants as defined in text 

X, Y, Z = rectangular coordinates in middle plane of a plate 
x - X / c ,  y=- Y/c,  z - Z / c  
y = 0.5772 Euler's constant 
e, O; ee i° = x + l + iy 
( 
v o -- 1 - -v  
ax, ay, zxy = stress components  

a~ ), a~ c), -xr~(° = perturbation stress components  due to the presence of the crack 
~b " 6Dmo/h2c2 

Pb = stress coefficient 
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)2+ = r 2 + (r 4 _ ~4)-~ 

~2_ = r 2 _ (r 4 _  ~4)~ 

k - U6 

I. Introduction 

It is well known that cracking of asphalt pavements is due primarily to temperature variations 
and to the constant application of heavy repetitive loads. Initially the effects of the cracks and 
holes on the riding quality are minor; however, intrusion of water very quickly causes appreci- 
able swelling of certain subgrades With resulting bumps and a very rough riding pavement. On 
sandy subgrades, for example, due to material falling into the crack, severe dips can occur. 
Furthermore, the high stress concentrations at the tip of the crack coupled with the frost heave 
can result in additional cracking and spalling, with pot holes as the final result. 

Consequently, considerable maintenance is usually required for crack filling and repairs. 
However, crack filling often has to be repeated annually, for the sealing materials which are used 
cannot adequately accommodate seasonal and long term contraction. Cracking, therefore, is 
considered to be economically very serious and it represents a major problem that pavement 
designers must face. 

Up to now, m ~ t  of the highway pavement design methods are based largely on experience 
expressed in the form of correlation between soil type, material properties, temperature, traffic 
volume and thickness. Although these methods have in the past met with reasonable success, 
rapid increases in the number of heavy axle loads and variety of subgrades that must support 
them have outrun past experience to a great extent. It is evident, therefore, that an adequate and 
reliable theory becomes essential. 

While ~t is recognized that the problem is extremely difficult due to its many parameters 
which are involved, nevertheless the application of the principles of modern fracture mechanics 
will lead to a better understanding and finally, to a practical solution of this complex phenome- 
non. " 

In this paper, the authors attempt to study only one aspect of this phenomenon, namely, the 
effect which the weight of a vehicle has on the propagation of an already existing, on the high- 
way pavement, crack. 

2. Generalities 

Analyses of plates resting on foundations usually fall into two groups. The first group follows 
the well known theory of Winkler and Zimmermann [1] in which the elastic foundation is 
considered as a system of separate unconnected springs. Such a hypothesis simplifies consider- 
ably the analysis of structures on elastic foundations and leads frequently to incorrect results. 
The second group follows the theory in which one describes the physical properties of the 
natural foundation more accurately by the hypothesis that the foundation is an elastic isotropic 
semi-infinite space [2]. Here again, such a hypothesis leads to cumbersome calculations and 
therefore the method becomes impractical. 

Recently a new theory based on Vlasov's general variational method [-3] has been proposed 
[4]. This theory considers the elastic foundation as a single or double layer model whose 
properties are described by two or more generalized elastic characteristics. The advantage of 
this theory is that it is more accurate than the theory of Winkler and Zimmermann and simpler 
than the theory of the elastic semi-infinite space. 

The characteristics of the fracture of pavements on a Winkler-Zimmermann foundation have 
been investigated and the results are reported in [5]. In this paper, the authors consider the 
analogous problem with a single layer foundation. 

Following [4], the differential equation governing the displacement function W ( X ,  Y) of a 
plate resting on single layered elastic foundation is 

V4W - 2r *e V2W+ 6"4W+ m* --~ew - q (2.1) 
6~t 2 D 
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with the quantities r*, 6" and m* as constants defined by * 

r ,  2 _ E* f n ~k a (z)dz (2.2) 
4(1 +vs*)D o 

6 *4 = ( l_v ,2)D {01(z)}2dz (2.3) 

m* = ( ~  + '~ fn  ~k2(z)dz) o --D (2.4) 

and where we have introduced the following definitions 
Es 

(2.5) E* = 1 - v s 

vs (2.6) 
~ -  1-v~ 

The usual moment components Mx, Mr, and Mxr are defined in terms of the displacement 
function W as : 

FO2W ~ 2 W ]  
NIx= - DL-~- ~ + v - ~ A  (2.7) 

M r = L w+ v c3X2 j (2.8) 

dZw 
Mxr = - D ( l -v )OXOY (2.9) 

and their corresponding stress components as: 

EZ VO2W ~2W] 
O'x/, = ( l ~ 2 ) L ~ - ) -  q- v t 3 y 2 j  

Ez F w+ 
o,b = ( 1 - v  ~)LaY s v-~-~A 

82W 
Zxr b = - 2 GZ 8X ~-----~. 

(2.10) 

(2.11) 

(2.12) 

3. A cracked plate on a single layered foundation 

Formulation of the problem 

Consider an infinite elastic plate which rests on a single-layered elastic foundation and con- 
tains a finite, through the thickness, crack of length 2c. The plate is subjected to two equal 
concentrated lateral static loads of intensity P0 with corresponding points of application 
(0, L, - h )  and (0, - L ,  - h )  (see Fig. 1). Furthermore, in order to simplify our mathematical 
complexities, we assume that L >> c. 

* It is assumed that no horizontal displacements occur in the elastic foundation and that the vertical displacement is 
given by a single function q/(z). From Ref. [4], a typical function is 

~,(z) - sinh [r,(H-z)] 

sinh Jr, H] 

where r, is a coefficient determining the variation with depth of the displacements. 
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Figure 1. A cracked plate on a single layered foundation. 
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It .is found convenient at this stage, to introduce the following dimensionless variables, i.e., 

x - X / c ,  y - Y / c ,  z - Z / c ,  1 -L /c ,  

also define 

r = cr*, fi = c6* _ (3.1) 

The differential equation governing the displacement function W(x, y), with x and y as 
dimensionless rectangular coordinates, may now be written in the form 

P0 V 4 W -  2 r2V 2 W+ 64W = c* --~ 6(x) { 6 ( y -  l) + 6 (y +/)} (3.2) 

where V 4 and V 2 are respectively the biharmonic and Laplacian operators, and 6(.) is the Dirac 
Delta function. 

The boundary conditions along the crack are those of free edges. However, inasmuch as 
classical bending theory is used, only two boundary conditions along the crack may be satisfied. 
In particular, one must require that the normal moment and equivalent vertical shear vanish, 
i.e., 

M y  
lim / = 0  for l < x < l  (3.3) 

lyl s 0  Vr 

In addition, it is required that the function W and all its partial derivatives up to the third 
order be continuous for all x and y, except for points on the segment - 1 < x < 1 and y = 0. In 
order not to lose any generality, one may assume that at infinity the plate is loaded in some 
general manner. 

Suppose now that one has already found a particular solution* satisfying (3.2) but there is a 
residual normal moment M r and equivalent vertical shear Vy along the crack I xl < 1 of the form 

M~p) = Dmo 
c2 (3.4) 

Vy(P) = 0 (3.5) 

where, for simplicity, mo will be taken to be a constant. *~' 

* See Section 5 for the particular solution. 
** For mo non-constant ,  also see remarks in Section 5. 
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Mathematical statement of the problem 

Assuming therefore that a particular solution has been found, we need to find a function W to) (x, y) 
such that it satisfies the homogeneous part of the partial differential equation (3.2) and the fol- 
lowing boundary conditions: 

at y = 0  and Ixl  < 1 

D FO2W(~) 02W~'] _ Dmo (3.6) 
M ~ C ' ( x ' 0 )  - -  c 2 L-~f + v Ox 2 Jl,l=O c2 

and 

83W c) ~3 W(c) 1 
Vy(C)(x'0)= - c  D-3 L 8ya + (2 -v )  0x2Oy ]lyl= 0 = 0 (3.7) 

at y = 0  and [xl > 1 
- 0" O" -1 

lim (W~)) -- 03 ~ (W_ - 0 (n = 0, 1, 2, 3) (3.8) 
lyl~O 

To complete the formulation of the problem, we require that the displacement function 
WtC)(x, y) together with its first partial derivatives be finite at infinity. These restrictions 
guarantee finite displacements and stresses far away from the crack. 

4.  Construction o f  the solution 

Method of solution 

We construct the following integral representation which has the proper behavior at infinity 

= f o  {P1 exp[-(s2+22)~lYl]+P2 exp [-(s2+22-)½IYl]} cos(xs)ds (4.1) W~CJ(x, y+-) 

where P1 and P2 are arbitrary functions of s to be determined from the boundary conditions 
and the ___ signs refer to y > 0 and y < 0, respectively. 

Assuming therefore that one can differentiate under the integral sign, one finds by substituting 
Eqn. (4.1) into (3.7) that 

-T- { [~2 _ (2 - v)s 2 ] ~Px (s)+ [f12 _ (2 - v)s 2] tiP2 (s)} cos (xs)ds = 0 (4.2) 
0 

where for simplicity we let 

= (s 2 + 2 2)~ (4.3) 

ti --= (s 2 + 22-)½ (4.4) 

Equation (4.2) may be satisfied if one chooses 

P1 (s) = [ti2 --(2-- v)s 2] tiP(s) (4.5) 
P2 (s) = - [ct 2 -- (2 - v)s 2] ~P (s) (4.6) 

where the function P (s) is still largely arbitrary. Similarly, substituting (4.1) into (3.6) and utiliz- 
ing Eqns. (4.5) and (4.6) one obtains 

-- {(~Z--vsZ)[ti2--(2--v)sZ]ti--(ti2--vs2)[~2--(2--v)sZ]~}p(s) cos(xs)ds = too, 
0 

for Ix l < l  (4.7) 

Next, it can easily be shown that all the continuity conditions may be satisfied if one considers 
the following expression to vanish 
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f o~ f l (~ 2 - f l 2 )p ( s ) cos ( x s )d s=O for I x l > l  (4.8) 

Reduction to single integral equation 

Because we are unable to solve dual integral equations of the type discussed in the previous 
section, we will therefore reduce the problem to that of the solution of a singular integral 
equation. If one now lets 

u(x) = c~fl(eE-fl2)p(s) cos(xs)ds for Ixl < 1 (4.9) 
o 

Then by Fourier inversion 
2 1 

P(s) - xctfl(~ 2_fl2) I0 u(4) cos (s4)d~ (4.10) 

where the function u (4), due to the symmetry of the problem is an even function. Thus, formally, 
substituting (4.10) into (4.7) one, after changing the order of integration and rearranging has 

ix L(2+,A_,lx-41)u(~)d~ = -moTzX for Ixl < 1 (4.11) 
- 1  

where the kernel L(2+, 2_, I x -4  I) is given by the expression 

L(2+, 2_, lx_4[) = f°° { (~2--vs2)[f12--(2--v) s2] 
o 

_ ([32 _ vs 2) [~2 _ (2 - v) s 2] ~ sin (x - 4) s ds (4.12) 

whose asymptotic form for small 2+, 2_'s is 

1 { -~6 [v(2-v) (5-  12y+ 12 In 2) L(2+, 2_, 1(I) = (1-v)(3+v) ~ + 

+ ( 3 - 4 7 + 4  In 2 ) - 8 v ( 1 - 2 7 + 2  In 2)](22 +22) 

+¼(3v+l)(1-v) 24+ In 2+-24- l n 2 - 2 2  + _22_ + ( l - v )  ~---T222+22-- In 2~} 
2+ - 2 _  

+¼(1 + 3v)(1 - v)(2 2 +22_)( In ( + ... (4.13) 

We require now that the solution u (4) be H61der continuous for some positive H61der index 
# for all x in the closed interval [ - 1 ,  1]. In particular, u(4) is to be bounded near the ends of 
the crack. 

Solution of  the inteoral equation for small 2+ and 2_ 

Case I. 6,~ r < 1 
The asymptotic form of the kernel becomes: 

1 
L(2+, 2_, I¢1) = (1-v)(3+v) ~ + { - ~ [ v ( 2 - v ) ( 5 -  127+ 12 In 2) 

+ ( 3 - 4 7 + 4  In 2)--8v(1-27+2 In 2)]r 2 

+¼(3v+ 1)(1 --v)(2 In r+  In 2) r 2} 

+½(1 + 3v)(1 - v ) r 2 (  In ( + ... (4.14) 
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ThUs, following the same method of solution as that described in Ref. [6], one may let ~ 

u(4) = ( 1 - 4 2 ) ~ [ a l + a 2 r 2 ( 1 - 4 2 ) +  . . .] ; Ill < 1 (4.15) 

where the coefficients Ai's are functions of r but not of ~. 
Substituting (4.15) into (4.11) and making use of the relations given in the Appendix, find, 

by equating coefficients, that:  

A1 = mo(12-~r2){{12(1-v)(3+v)+ { - ¼ [ v ( 2 - v ) ( 5 - 1 2 7 +  12 In 2)+ 

- 2 ( 3 - 4 7 + 4  In 2)+ 1 6 v ( 1 - 2 7 + 2  in 2)] + 2a(3 v+  1)(1 -v)(1  - i n  2 + 2  In r)} r2+ 

+ {6-~[v(E-v)(5- 127+ 12 In 2 ) + ( 3 - 4 7 + 4  ln2) - 8 v ( 1 - 2 7 + 2  In 2 ) ]+  

-~2(3 v+  1)(1 - v)(-~- In 2 + 2  In r)} r4}} -1 {4.16) 

Case II. r = k6 < 1 
The asymptotic form of the kernel now becomes 

L(2+, 2_,  I~])= (1--v)(3+ v) ~ + I -:--~ [v (2 -- v) (5 - 1 2  7+  12 In 2)+ 

+ ( 3 - 4 7 + 4  In 2 ) - 8 v ( 1 - 2 7 + 2  In 2)]k262+ 

[ 2k 4 - 1  k 2 +(k  4 -  1) ½ ] 62 
+¼(3v+ 1)(1 - v )  14(k4 - 1)~ In k2 - (k4_ 1) ½ + 2k 2 In 6_ + 

(1 + v) k 2 + (k 4 -  1) ½ 
+ 4(k4 - 1) ~ In k2_(k4_  1) ~ 62 ~ (+½( l+3v) (1 -v )k262 . (  In ( +  ... 

and if again we let 

u (4) = (1 - ~2)½ [B1 + B2 62 (1 - 42) + . . . ]  

then 

B 1 = 

(4.17) 

(4.18) 

1 k 2 + ( k 4 - 1 )  ½ 
m o (1 - v)(3 + v) + 8 (k 4 -  1) ½ In k2 _ (k 4 _  1) ~ [(1 + v) + ¼(3v + 1)(1 - v)(2k 4 - 1)] 62 + 

- ~ 6  [-v(2- v ) ( 5 - 1 2 7 +  12 In 2 ) + ( 3 - 4 7 + 4  In 2 ) -  By(1-2  7 + 2  In 2)+ 

- 2 ( 1 +  3 v ) ( 1 - v ) ( 1 - 2  In 2)]k262+¼(3v+l)(1-v)k2(ln 6)62+ 

3 k 262 
+ ( 1 - v ) ( 3 + v )  4 _ 3 k 2 6 2  

- ~ 2  [v (2 - v) (5 - 1 2  7 + 12 In 2 ) + ( 3 - 4 7 + 4  In 2 ) - 8 v ( 1 - 2 7 + 2  In 2)+ 

(4.19) 

k 464 
- 2 ( l + 3 v ) ( 1 - v ) ( ½ - 2  In 2)] 4 _ 3 k 2 6 2  + 

3 k 2 + (k 4 - 1) ½ k 2 t~ 4 
+ 16(k4_1) ~ In k2_(k4_1)~  [ ( l+v)+¼(3v+l ) (1 -v ) (2k4-1 ) ]  4 _ 3 k 2 6 2  + 

k 4 64 }- 1 

+ 3 ( 3 v +  1 ) ( l -v )  4 _ 3 k 2 6 2  (In 6)+ ... 

The displacement function W 

For both of above cases, we obtain 
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P( s )=  (22+_22_)(s2+22+)½(s2+22) ½ 01 + 3 0 2 A 2 ~ +  

D A 4Ja(s) (4.20) + 1 5  a - - ~ - + - - .  

where in Case I, 

D i = Ai ,  i = 1, 2, 3 . . . .  

in Case II, 

D i = B i  i =  1, 2,3 . . . .  

and A = r (4.21) 

and A = 6 (4.22) 

Therefore, a substitution of (4.20), (4.5), (4.6) into (4.1) will determine the bending deflection 
W (c) as follows: 

W(c)(x'Y±) = o --(1--v)(s2+)~2) ½+ ~ - ~ - 2 ~ -  ] e x p  [-(s2+;~2+)½lyl] + 

(1-v)2  
- [-(l-v)(s2+22_) ½+ (sZ+22_) ½ j e x p  [-(sZ+22_)½1Yl]}x 
X { D1JI(s)'JI-s 3D:A2Jz(s)~ + 15Da A'~J3~)~ + "'" }cos(xs)ds(22+-22) (4.23) 

The stress field ahead of the crack tip 

In view of the displacement function W, the bending stresses at the surface z = - h/c may now 
be computed as 

[ . 0  - -  

0.8 

]i o.s 
I I ¢  0 . 4 -  

0 . 2 -  

0 I 
0 0.2 

Figure 2. Stress coefficient versus r. 
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Pb ( 3 - 3 v  01-Vcos502)+O(eO) 
= - 4 - -  cos  - - - T -  

1 - v  50) Pb ( l l + 5 v  cos_02 + cos + O(e °) 
trr - (Ee) ~ \  4 T -2- 

Pb ( 7+V 0 1 - v  50) 
zxy- (2e) ~ - - - ~  sin E 4 sin~- +O(e  °) 

where the stress coefficient Pb is given by 
(i) for 6 ~ r < l  

- 

(4.24) 

(4.25) 

(4.26) 

fib (12_ar2) {12+ {-¼Iv(2-v) (5-12  7+ 12 In 2)+ 
(3Tv) 

- 2 ( 3 - 4 7 + 4  In 2)+ 16v(1 -27+2  In 2)] + 

r 2 
+-~(3 v+ 1)(1-v)(1-1n 2+2 In r)} (1-v)(3+v) + 

+ {~ [v (2 -  v)(5-127+ 12 In 2 ) + ( 3 - 4 7 + 4  In 2 ) -  8v (1 -27+2  In 2)] 
r 4 } -  1 

- A ( 3  v+ 1)(1- v)(~-ln E+E In r)} (1 -v)(3+v) + "'" (4.27) 

Notice that 6 does not appear in Eqn. (4.27) for it is negligible. A plot of this is given in Fig. 2. 
(ii) for r=k6 < 1, where k is a real constant 

tY b { 1 kE+(k4-1) ½ (l+v)+¼(3v+1)(1-v)(2k4-1)62 
P b -  (3+-V) 1 + 8(k4_1)~ In kE_(k4_l)½ (1-v)(3+v) + 

1 
- 16(1-v)(a+v) [v (2 - v) (5 -12  7 +12 In 2 ) + ( 3 - 4 7 + 4  In 2)+ 

- 8 v ( 1 - 2 ) , + 2  In 2 ) -2(1+3  v)(1-v)(1-2  In 2)] k262+ 

3 k 262 3 
+¼k2 (In 6)62 + 4-3k262 32 (1 -  v) (3 + v) [v (E - v) (5 - 12  7 + 12 In 2)+ 

k 464 
+ ( 3 - 4 7 + 4  In 2 ) -8  v(1-2  7+2 In 2)-2(1 +3 v)(½-2 In 2)] 4 - 3  k262 + 

3 kE+(k4- 1) ~r (l+v)+¼(av+l)(1-v)(2k4-1) k264 
+ 16(k4_1) ½ In kE_(k4_l)½ (l+v)(3+v) 4-3k262 -~ 

3 k 4 6 4 } - 1 
+ 32 -  24 k 262 In 6 +. . .  (4.28) 

A plot of this is given in Fig. 3. 

5. The particular solution 

In general, the actual stress fields will depend upon the contributions of the particular solutions 
reflecting the magnitude and distribution of the applied load. On the other hand, the singular 
part of the solution, that is the terms producing infinite elastic stresses at the crack tip, will 
depend upon the local stresses existing along the locus of the crack before it is cut, which of 
course are precisely the stresses which must be removed by the particular solutions described 
above in order to obtain the stress-free edges as required physically. 
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1.0 

0 . 8  

l 
+ 0.6 

I ,#  0.4 

CASE II r = k ~  < 1  v -- I / 3  

0.2 

o I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

8 
Figure 3. Stress coefficient versus ft. 

k - - 0  

To get the particular solution, one has to solve the following differential equation: 

V 4 Wry)_ 2r 2 V2 Wtp) + ~4 W(p) = Po c4 D 6 ( x ) { 3 ( y - l ) + 6 ( y + l ) }  (5.1) 

with boundary conditions 

lim M iv) (x, y) = 0 
X ' ' ~  at) 

~ +  ~ (5.2) 
and 

lim V tp> (x, y) = 0 

' . . . .  (5.3) 
Suppose one chooses the integral representation 

W <v) = R (s, y) cos (xs) ds (5.4) 
o 

then substitutes into (5.1), and follows the Green's function method of [12], without going 
into details, will find 

W(V> = Po c4 
2rr0(22 _,~2_) {Ko I-2+ (x2+ ly--/12)+] + Ko I-2+ (x2+ lY+/12) +] + 

-- Ko [g_ (x2 + l y -  ll2)+] -- Ko[R_ (x2 + ly + ll2)½] } (5.5) 

It follows at y = 0  and Ixl < 1 

M~P~Ix, O) = Omo (5.6) 
c 2 
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where 

m o 

and 

Po ca ~ ( l - -v)  [1 2x2 7{2+K,[2+(x2+I2)~]+ 
27~D(22--22_)l(x2+12) ½ x2+12 3 

12 + VX2 I 
- 2_  K I [-2_ (x 2 + 12) ½] } + x2 + 12 {22+ K 0 [-2 + (x 2 + 12) ~] --  22 K 0 [-2_ (x 2 + 12) ~3 } 

) 
(5.7) 

o) = o .  (5.8) 

Now, since we have already assumed that 1 ,~ l, it is easy to see that the above bending moment 
(along the crack) is approximately a constant, i.e., -Dmo/c 2. Alternately, as an engineering 
approximation, one may think of the quantity ( -  Dmo/C 2) as an upper bound, or lower bound, 
or even a mean value of the precise bending moment along the crack in order to obtain an 
estimate of the stresses in the vicinity of the crack. 

Furthermore, if one wants a more accurate result than that of a uniform residual moment, 
he must expand mo, for Ix[ < 1, in the form Y.nan X2n (even power because of the symmetry of 
the problem), and again our previous method of solution will still be applicable. Of course, the 
coefficients A, and B, in this case may change, but the character of the solution will still remain 
the same. 

Critical loading 

Following the concepts of the Theory of Fracture Mechanics, one may make an energy 
balance* to derive** the following approximate fracture criterion for crack initiation. 

For r = k6 

2 ( 9 - 7 v ) ( 3 + v )  h 2 I ( l r K 2 ) l  = - -  a* cos-1 exp IJ (5.9) Poo,.,o., (33+6v_7v2)(l+v) c 2 8 O-.2c 

where K = fracture toughness (of the top layer), 

f t .  = O-yield + (Oyield + O-ultimate)/2 (of the top layer) (5.10) 
- 2 

I k2+(k4-1)  ½ ( l+v)+¼(3v+l)(l-v)(2k4-1) 62 
In ~ _  + I = 1 + 8(k4_i)~ (k4_1) ~ O _ ~ ) ~ + ~ j  

1 
- I v ( 2 -  v ) ( 5 - 1 2 7 +  12 In 2 ) + ( 3 - 4 7 + 4  In 2)+ 

16(1-v)(3+v) 

- 8 v ( 1 - 2 7 + 2  In 2)-2(1  + 3v) (1 -v) (1 -2  In 2)] k262 +¼(In 6)k262 + 
3 k 2 6 2 

4 - 3 k 2 6 2  

3 
- [ v ( 2 - v ) ( 5 -  12 7+ 12 In 2 ) + ( 3 - 4 7 + 4  In 2) 

32(1-v)(3+v) 

k 4 64 
- 8 v ( 1 - 2 7 + 2  In 2 ) -2 (1+3v) (½-2  In 2)3 4_3k262 + 

3 k2 + (k4 -1 )  ½ (l+v)+¼(3v+l)(1-v)(2k4-1) k264 
+ In 

16(k4-1) ½ k 2 - ( k 4 -  1) ½ ( l+v)(3+v)  4 - 3  k262 
3 k 4 ~  4 . / - 1  

+ 32_24k262 In 6+. . .  (5.11) 

* The approach is based on a corollary of the First Law of Thermodynamics and was first applied to the phenomenon 
of fracture by Griffith [13]. 
** For more details see reference [-14]. 
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{ ~  ( l + v )  F 2 (k2+(k4-1)~)(61)2+ 
J - + (1 + v)y + 4~4--Z-]-)~ [(k + (k 4 -  1) ½) In 

4 

- ( k 2 -  (k 4 - 1 )  ~) In (k2- tk4 4 1)½)(6/)2] + ~6 [4(3 + v ) 7 -  1 1 -  5v]k2(61) 2 + 

(3+v)(6/) 2 [--. 2 - 4 . . . .  + (  k4-1)½)(602 
+ 3-~(k~-~_~))~L(g +(k -1)~) ~ In (k2 4 + 

/ - 1  
- ( k 2 - ( k 4 - 1 ) ½ )  2 In (k2-(k441)~)(61)2 ] + ...~ 

The plots of I and J are given in Figs. 4 and 5, respectively. 

(5.12) 

[ . 5  -- 

1.0 

0 . 5 -  

0 
0 

Figure 4. I versus 6. 

k = 2  k I 

= 0 

r = k ~ < l  v = l / 3  

I I I I I 
0.2 0.4 0.6 0.8 1.0 

8 

6. C o n c l u s i o n s  

The local stresses near the crack tip are found to be proportional to the usual 1/e ¢ singular 
behavior and the usual angular distribution. Furthermore, the stress intensity factor is a 
function of the two characteristic elastic moduli, i.e., r and 6, and in the limit as r-oO and 6--*0 
we recover the well known results of a plate without a foundation. 

Typical terms of the stresses are of the form 
(1) for r=k6 and 6 small: 
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0.5 

0.4 

0.3 

0.2 

0.1 

r = k ~ < l  ~=1 /3  

0 I I I I 
0 O.I 0.2 

a l  
Figure 5. J versus ~l. 

k=O 

O'sup • ~ { l + a ~ 2 + . . . }  -1  

¢Tunsup. 

(ii) for 6 ~ 0  and r small: 

 sop 02_ r2){12+br2+...}-i 
O'unsup. 

where a and b are positive constants. We conclude, therefore, that the general effect of a 
pavement foundation is to decrease the magnitude of the stresses in the neighborhood of the 
crack tip and as a result prevent further fracture. This decrease clearly depends on the values 
of the two parameters which characterize the foundation (see Figs. 2 and 3). 

Furthermore, it is found that the critical load for crack initiation increases as the foundation 
presents more resistance to shear deformation. 

Finally, by letting k~0 ,  one recovers the results for a Winkler and Zimmermann foundation 
[5]. 
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RI~SUMI~ 
En utilisant un mod~le repr6sentant une fondation ~ simple couche, pour d~crire une route ou un tarmac, et une for- 
mulation par int~grales, on r~soud le probl~me d'un rev&ement comportant, darts la touche de surface, une fissure de 
longueur 2c soumise ~ ses extr6mit6s ~ un champ de contraintes d6termin& L'analyse montre que les contraintes 
pr6sentent le comportement usuel represent6 par 1/e ~, qui est caract6ristique des probl~mes de fissurations. De plus, 
on trouve que le facteur d'intensit~ des contraintes d~crolt lorsque les grandeurs des deux param~tres caract~risant la 
fondation s'accroissent. Enfin, lorsque la fondation pr&ente une plus grande r6sistance ~ la d6formation par cisaillement, 
il s'ensuit un accroissement de la charge critique n~cessaire fi l'amor~age de la fissure. 

Z U S A M M E N F A S S U N G  
Durch Gebrauch eines Modelle~ von einem Fundament mit einer einzigen Schicht zur Beschreibung eines Autobahn- 
oder Flughafenbelages, und einer Formulierung durch Integrale wird das Problem des Belages, das einen RiB yon 
endlicher L~inge 2c in der Oberfl~ichenschicht enth~ilt, in Hinsicht der Spannungsverteilung an der Ril3spitze gelSst. 
Die Analyse ergibt dab die Spannungen das gebriiuchliche 1/e ½ singul~ires Benehmen enthalten was spezifisch fiir 
Ril3probleme ist. Weiterhin wurde gefunden dab die Spannungsintensit~itsfaktoren abnehmen wenn die Werte der zwei 
Fundamentparametern zunehmen. Und schliel31ich da das Fundament einen grSBeren Widerstand gegeniiber Quer- 
verformungen besitzt, nimmt die kritische Last der Ril3auslSsung zu. 

Int. Journ. of Fracture, 11 (1975) 93-106 


