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This paper discusses a method for solving three-dimensional mixed-boundary-value
problems which arise in elastostatics. Specifically, the method is applied to a plate of fi-
nite thickness which contains a finite, through the thickness, line crack. The analysis
shows that (a) in the interior of the plate only the stresses oy, oy, 0z, Txy are singular of
order 1/2; (b) in the vicinity of the corner point all the stresses are singular of order [(1/
2) + 2v]; (c) as the thickness h — = the plane strain solution is recovered and; (d) as v —
0 the plane stress solution is recovered. Finally, it is found that in the neighborhood of
the corner points, even though the displacements are singular for certain values of the
Poisson’s ratios, the derived stress field satisfies the condition of local finite energy.

Introduction

A major debility in current fracture mechanics work is the igno-
rance of the effects of thickness on the mechanism of failure. For
example, the common experimental observation of a change from
ductile failure at the edge to brittle fracture at the center of bro-
ken sheet material has so far defied analysis. Yet an orderly theo-
retical attack on the problem can provide important guidance to
this and other phases of fracture research. The most potent mathe-
matical tool for this attack is the linear theory of infinitesimal
elasticity as applied to a cracked plate of finite thickness. Al-
though this theory cannot include the nonelastic behavior of the
material at the crack tip per se, it can evince many characteristics
of the actual behavior of a cracked plate, including those due to
thickness. Thus the theory of elasticity is a logical fountainhead
for detailed theoretical study.

The mathematical difficulties, however, posed by three-dimen-
sional problems in elasticity are substantially greater than those
associated with plane stress or plane strain. Nevertheless, a few
particular cases have been solved and can be found in references
[1-2].1

The stress distribution in a thick plate containing a smooth ¢ir-
cular cavity has been discussed by Sternberg and Sadowsky [3],
Green [4], and Alblas [5]. Their work has shown that the thickness
of the plate can exert appreciable influence on the stress concen-
trations of the circular hole.

! Numbers in brackets designate References at end of paper.
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An attempt has been made recently, by Hartranft and Sih [6] to
investigate the triaxial characteristics of the crack-edge stress field
in a thick plate using a variational principle. In their analysis, they
have assumed that the local stress field interior to the plate is in a
state of plane strain thus forcing the normal, to the plate faces,
stress to vanish in a boundary-layer sense. Under these assump-
tions, their results show that the stress state depends on the plate
thickness to crack length ratio and a dimensionless parameter
characterizing the stress distribution across the thickness. Finally,
the authors emphasize that although these results are considered
to be a refinement over those of generalized plane stress they re-
main still an approximation to the three-dimensional problems.

This paper describes a method for constructing solutions to
some three-dimensional mixed boundary-value problems which
arise in elastostatics. In particular, the method is applied to the
problem of a uniform extension of an infinite plate containing a
through the thickness line crack.

Formulation of the Problem

Consider the equilibrium of a homogeneous, isotropic, elastic
plate which occupies the space [x| < «, |y| < ©, |2| < h and con-
tains a plane crack in the x-z- plane. The crack faces, defined by
|| <¢,y =0%|z| <h, and the plate faces |z| = h are free of stress
and constraint. Loading is applied on the periphery of the plate |x|,
|y| = « and is given by

In the absence of body forces, the coupled differential equations
governing the displacement functions u, v, and w are
m ( 9,8 ,0

(22 a_z)e + Vi, v,u) =0 (1)~(3)

where v? is the Laplacian operator, m = 1/, v is Poisson’s ratio,

_ou, v

ow
T ooex 9y

9z’

(4)

SEPTEMBER 1975 / 663



and the stress-displacement relations are given by Hook’s law as

9 9
o,=2c{_“+ 0 },...,-r,yzc{—”+a”},...

ox  m — 2 3y | ox
(5)—(10)
with G being the shear modulus.
As to boundary conditions, one must require that at
|x] < ¢,y =0 |z| = & Tey = Tye = 0, =0 (11)
2| =7 =1, =0, =0 (12
|9| — = and all x: Ty = Ty = 0, 0,= 7y (13)
|| — o0, =7, =7, =0. (14

It is found convenient to seek the solution to the crack plate
problem in the form

u=uP + 4%, ete., (15)

where the first component represents the usual “undisturbed” or
“particular” solution of a plate without the presence of a crack.
Such a particular solution can easily be constructed and for the
particular problem at hand is

u(P) e ZEGQA(m o 2)29(, ,U(P) —

11 — _1y21%0(m -2) B — (o2 %0

[1 - (m-1)?] sca » Wt = (m-2) 5Ga % (16)
where

A= (m-13 - 3(m-1) + 2.

Mathematical Statement of the Complementary
Problem

In view of the particular solution, we need to find three func-
tions u(©@(x, y, 2), v©(x, y, z), and W@ (w, y, z), such that they sat-
isfy simultaneously the partial differential equations (1)-(3) and
the following boundary conditions:

At
|%| < ¢,y =0% |2| =h:
7,0 = 1,9 =0, 0,9 = —g, (17)
At
|Z| = I sz(c) - Tyz(C) = O.Z(C) =0 (18)
Var + 9t —> o: %', »©) and w'®’ are to be bounded.
(19)
Method of Solution

In constructing a solution to the system (1)-(3) we use the meth-
od described in reference [1] to recover the following ordinary dif-
ferential equations of the independent variable z

s ( 2 m 2) «©) ( m ) )
— e +
r + | D¢ + P 9% Ju 2 9,9, Jv

d )
(g 02 <0 o

a2t m ) m
+ 2 B et 21,,(C) + LI )
dzt 2 m-2 °2 )Y m-2 1% %

4 ( i a)d“’(m -0 (21)

m-2 %)dz
m-1\d*w ‘¢’ m_\du'®
2<m—2> azr (m_231/ az
)
<Wy—f—2— 82>d1:iz + D =0, (22
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where the symbols of differentiation

9 9 92 92
= = 2 —
81‘5’32=5§’D=W+W

are to be interpreted as numbers.
Upon integrating the foregoing system subject to the initial con-
ditions,

. du(C) d’U(C)
u(c) = u,, ,U(C) = vy, w(C) = 0’ — - 0’ =
d (c)
=0, Z:;—zz wy' for z = 0, (23)

one has after a few simple calculations?

m  z sin (zD)

u‘©) = cos (zD)uy — 5m=2) D 940, (24)
m  z sin (zD)
' = cos (zD)v, — CTeTE) D 2,0, (25)
) _ sin (zD) -, m [sin (2D) ]

w'e = ==y # 5(m-2) D z cos (zD) | 6,

(26)

6®) = cos (zD)6, (27)
where

90 = al’l,to =+ 821)0 - wo’. (28)

The stresses on a plane perpendicular to the z-axis may now be
expressed as

%TH(C) = —————SinD(ZD)(Dzuo — 9,wy)
N mm_ 52 Cos (2D)8,6, (29)
é,ﬂ(c) _ _SinD(ZD)(Dzv0 — o)
= myﬁ 52 cos (2D)9,0, (30)
éo,(c’ = 2 cos (zD)w,’
[mz_ 5 cos (zD) + s 2(zD) sin (zD)]@O (31)

and boundary condition (18) now takes the form
dygug + dipvg + dgwy’ = 0
dogug + dygvy + dygwy’ = 0 (32)
dyug + dyyvy + dggwy’ = 0,

where the differential operators d;;, are defined as

mh
m—2

dy = —I:D sin (kD) + cos (hD)aiz], dyy

mh
m—2

= —[D sin (kD) + cos (hD)822:|, dyy = dy

2(m_—1) cos (kD)
m

mh
=~ ou_g €08 (hD)2,9,, dsg = =

+ —7;”?21) sin (hD), diy = 8ydy*, dyy = dydy*, dg*

sin (kD) h
= % = 7;”—_5 cos (hD), dg; = 8ydy**, ds,

mh
= dpdg*¥, dg** =

m=-2

cos (kD) + D sin (kD). (33)

m-2

2 One must represent cos (zD) and sin (zD)/D in the form of a series in
powers of zD (they will, of course, contain even powers of D) and, further,
interpret the symbol D? as a differential operator acting on the functions
uo(x, y), vo(x, y), and w’o(x, y).
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Keeping in mind that the differential operators a1, a2, D? obey
the same formal rules of addition and multiplication as numbers,
the solution of system (32) is given by

uy = X1(%,9), v9 = Xo(%,9), wy' = X3(x,9),  (34)

where the unknown displacement functions xi1, x2, x3 satisfy the
differential relations

QX{ =0,7=12,3 (35)
| d11dy0ds3 . -
_ _ 2m_ ., 4 sin (hD)[ sin (ZhD)]
Q = |dydydy| =~ 1D Z2 1 +
dgydyodyg

(36)

We construct, next, the following integral representations for uo,
vo, wo’, which have the proper behavior at infinity

wilx,y*) = fo e

v lyl@pe ™ + iRv(1)er24BV21yl
v=1
= /T
+ Z;S,,“’e' s *“nz'”'} sin (xs)ds (37)
=

volx, ) = 7 J:{(PZ +

0
2
+ 25 Bge *anzwl}
n=1

wy' (x, ¥*) = fom {(Ps +

+ Z;Sn“’e'“ 32”’"2'”'} cos (xs)ds. (39)
e

The + signs refer toy > 0 and y < 0, respectively, an, = (n7/h)(n
=1,2,3...), and 3, are the roots of the equation

sin (28,7) = —(2B,h). (40)

This equation has an infinite number of complex roots which ap-
pear in groups of four, one in each quadrant of the complex plane
and only two of each group of four roots are relevant to the present
work. These are chosen to be the complex conjugate pairs with
positive real parts. The only real root 8, = 0 must be ignored.?

Finally, an examination of the solution shows that the unknown
functions Py, Q1, R,(V, S, etc., are not all independent. Assum-
ing, therefore, that one can differentiate under the integral sign
and inserting equations (37)—(39) into (32) one finds

ly Qe + iR @ =/ s, 200
v
v=1

cos (xs)ds (38)

‘y|Q3)e""" i 2Ru<3)e-/52¢5v2|y|

2
QZ = - inQS = 07P3 = leys(Pi + PZ)
3m — 1
o Qy, (41)—44)
R, =R, sR® = —/s® + B2 R, (45)—46)
m 2 (3)
[1 + o cos (B,,h)] R,
_ _p2lq__m 2 R,
_ —p _[1 — cos? (an) |2 (am)
Sy =8,8®P = ———2—35_59 — 0. (48)~(50)
— 82 + anZ

In order to facilitate our subsequent discussion, it is found con-
venient at this stage to summarize our results. Defining

2 . a2
) st R sin (8,2)
T, = h R,, (51)
1+ % cos? (B,h) By
m— 2

3 The roots of equation (40), as given by reference [7], are tabulated in Ap-
pendix 1. We shall postpone the ordering of the roots until a later time.
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we may now write the complementary displacements and comple-
mentary stresses in the form:
(i) Complementary Displacements

c ” 1 -
u® = f {(P1 + [y]Q + =7 2% Qe

o -J52+B,,zly|
Z T, gy cos (B,h)[(m —2

+ m cos? (B,h)) cos (B,z) — mB,z sin (B,z)]

is"e- Hranllsl cog (oz,,z)} sin (xs)ds (52)

(c) __ = 3m 1Q1 - _
v q:fo {( m+ 1 s Py = |v]ey

1 ir o~/ sk, 1)
m — 2 v

v=1

SZZQ1>e-slyl &

m + 1 S

x cos (Bh) [(m — 2 + m cos? (B,h)) cos (B,z

m
S wif 62 2
— mB,z sin (B,2)] — 2.8, ————e7 e
n=1 /SZ e anz

cos (a,,z)} cos (xs)ds (53)

o 2 1
(e) -slyl RN, Y
" J;{(m+le) +m—Z

e-J s2~6,»,2 1yl

X Zw:ﬁul",, ~———— cos (B)[(2m — 2
- svs? + B,,Z
— m cos®(B,h)) sin (B,z) — mpB,z cos (B,,z)]} cos (xs)ds
(54)
/5282151

e _9 & .
g — f {_2 m Q e-slyl G 226 °r
+ 1% yitp
0 m v=1 s /sz + Bu2

x cos (B,h) cos (Buz)} cos (xs)ds. (55)

(ii) Complementary Stresses
oo _ om mil" 52 o~/ s%48,%151
2G m_2°”=‘vus/sz+6v2
x [sin® (B,h) cos (B,z) + B,z sin (B,2)] x cos (xs)ds (56)
T E(C) _ fm{ 2m Zw: T e +Bu Iyl
G 0 m — 2 V=1‘ L
+ ﬁu
x [cos? (B,h) sin (B,2) + B,z cos (B,2)]

= (2 2
— > S,a,e™ s ren 19 gin (a"z)} sin (xs)ds. (57)

e 248021yl

cos (B,h)

cos (B,h)

n=1

(c)

T “( 2m
= = [ {253 g,
x [cos? (B,h) sin (B,2) + B,z cos (B,z)]

T, 22 e” Lol 1ol
n

n=1 82 3 a"Z

cos (B,h)

sin (a,,z)} cos (xs)ds. (58)

Eﬁw{(p+|| I 1 2,29
2G J, WP + V1@ & oy 572

e~ 2\\Bl,2|y|
sVs? + B,,z
Z e-J 2-&'Bl,zlyl
r,
m = 2 9 9
- Vst + B,

x cos (Bh) [(m — 2 + m cos® (B,h)) cos (B,2z) (59)

_L =slyl 2 S 2
m+1Q1)e T T

cos (B,h) cos (B,z)
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—-m B,z sin (B,z)] + Z;S,, se™/sPar 15 cog (a,,z)}

x cos (xs)ds (59)
(Cont.)
(e) ©
9,7 _ __2m _ _
s = J AT o - sP - bylse,
o -/ 52482131
o 2.2 -slyl Zr e g
By ZQi)e _2;8[‘ us‘/s_2.+—3u2
x cos (B,h) cos (B,z) + 1 5

5 ZT —§LV3+ o/ 8,215 cog (B ) [m -2

+ m cos® (Buh)) cos (B,z) — mB,z sin (B,z)]

- /2, 2
— Y S,se”’ s M cos (a,,z)} cos (xs)ds
n=1

(c) © _
Ted” ;J’ {(2<m 1
G 0 m + 1

%29, + 2|y |‘sQ1)e'sm _

(60)

)Q1 + 2sP,

2
m— 2

A
m +

X ir,, e/ 38,5150 cos (Bn)[(m — 2
v=1

+ m COS2 (B,,h)) Ccos (sz) - vaz sin (Buz)]

e~/ s2+agtlyl cog (a"z)} sin (xs)ds (61)

By direct substitution, it can easily be ascertained that the fore-
going complementary displacements satisfy Navier’s equations
and furthermore the corresponding stresses o,(, 7., 7,,(® do

vanish at the plate faces z = +h.
Finally, if we consider the following two combinations to vanish:

i— cos (81) [sin? (81) cos (8,2)
s sS,
+ B,,Z sin (BVZ)] + g; Vﬁ COS (a"z)

m—2

am Z? =0 (62)
v=il
and
pro 22 T, cos (BA)[(m — 2 + m cos® (B,h)) cos (B,2)

= 282 + «
Z =T azS cos (a,2)

m— 1
8222Q1 - ZSP1 - Zm

— mpB,z sin (B,2)] —

(63)

1+ m @ =0

for all |2| < h, then two of the remaining stress boundary condi-
tions are satisfied automatically, i.e.,
Ty'® =7, = 0forallx, |z2| =handy = 0.

If now one uses the Fourier series expansions given in Appendix
2 and equation (62), he can express the unknown coefficients S, in
terms of the I',’s, in particular

S Bt

_On n
Vs? + a2 =D m — 2 Z'—T BT — a))? (64)
and furthermore, since @ is arbitrary, we let
5% = = IZF BA. (65)

val

We may also combine equations (62) and (63) to obtain
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- —z—il"v{(Bm — 2 — m cos® (B,h)) cos (B,h)
m — 2 v=1

2m Z

val

x cos (B,2) + mpB,z cos (B,h) sin (B,2)} +

X T (BV ){(1 + cos® (B,)) cos (B,h) cos (B,2)

- B,z cos (B,h) sin (B,2)} = — I i = s%2%Q,

-1
ZI" 2sP; — 2(%—1>Q1; [zl =h

The foregoing equation is valid for all values of z and for z = 0
yields

- g (66)

©

— 2 — m cos? (B,h) cos (B,h)
v=1

L 2
* mzingéru<%) (1 + cos¥(B,h) X cos (B,k)

8m < m =1
- oo - 2k - 2

I
Equations (65) and (67) enable one to express P; in terms of the

T')’s. Finally, in view of equation (67), equation (66) may now be
written in the form*

gry cos (B {(3m — 2 — m cos? (B,))(cos (B,2) — 1)
+ mB,z sin (B,2)} — MZF cos (B, )( B”)

x {1 + cos® (B,h))(cos (B,2) — 1) — B,z sin (B,2)}

= (m - 1);211",,6,,222; |z| =n (68)

which contains the T',’s as the only unknowns.
Returning now to the last boundary condition we require that

s Fv m? — 1 1
J:J ;—;{{_ m— 2 Buz T m =2 cos (th)[(zﬁuz
+ (s + BA(m — 2 + m cos® (B,h))) cos (B,2)

- m(s® + B,)B,z sin (ﬁuz)][l szs+ ,Z]
[(82 + 0-,.,2) - S\/sz—+&"—]

8m <~ BN
+m—2,,z=‘1(32— D)?

X cos (a,,z)}s cos (xs)ds = |x| <'e, |z| = 1, (69)

2G’
where we have made use of equétions (63)—(65). Furthermore,
along |x| > ¢ and |y| = 0 we must require the complementary dis-
placements together with their first partial derivatives to be con-
tinuous for all |z| < h. The latter can be accomplished if one con-
siders the following integral combination to vanish

“r,

55 cos (xs)ds = 0; |x| > c. (70)

0
The problem, therefore, is to solve the dual integral equation
(69)—(70) for the unknown functions I',/s® subject to the condition
(68). But this is plausible for the I',’s are complex.

Solution of the Integral Equation
Seeking a solution of the form

< > ;)A (&) __!z+_1(s_c_) (71)

sc)kﬂ

4 Note that equation (68) represents the vanishing of the integrand of
equation (61) on the plane|y| = 0.
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and employing the method described in Appendix 3 one finds after
some straightforward computations that

ZZA (k){

v=1k=0
X LM(B) - — f 5
x cos (8,2) — mB,z sin (B,2)] L¥(B,)

Z; B, P ot () cos (a, Z)}
o\ 1 1 ,

"(z%)sz(;Jr—w lz| =2 G=0,1,2....),

(72)

ﬁ,,zli’” - B” ~— Cos (B,h) cos (B,2)

cos (B,)[(m — 2 + m cos? (B,h))

m—2

where the integrals I,* are defined as

21(S€) 141 (SC) |
f (S({‘)k* Sci)l-f
1
= FRG ¥+ e 26
s J pet(8€) J;,4(s0)

- j:) y {1 T Vst ¥ sz} (sc)¥*1 (sc)i* ds, I (4,)
= fws{(sz+B,,2) —-s Vs + ﬁv}—kﬂ%iﬁf)—ﬂ‘(—sic—) ds. (73)
0

(sc)*

Similarly equation (68), taking into account the identity

Jput(2) _ Ja(2) _ Jyq(2)
2 e = (@) T — T (74)
yields
> A, Va,(2) =0, iAv‘”a,,(z) =0 (75a,b)
v=l v=l
S kA, W (2) — A,%Va,(s) + A,%D(8,0)%,(2)} =
v=i

(F=1;2, 8; .::); I(75c)
where for convenience we have defined

a,(2) = —(m — 1)B,%2* + cos (B,m){(3m — 2
— m cos¥B,h)) (cos (B,2) — 1) + mpB,z sin (B,2)} (76)

and
b,(2) = —m cos (B,W){(1 + cos? (B,h))(cos (B,2) — 1)
— B,z sin (B,2)}. (77)

It is clear now that the solution of equation (72) and (75) will de-
termine the value of the coefficients 4,%, which are functions of
the crack to thickness and Poisson’s ratios. However, as we will see
later, the stresses ahead of the crack tip are proportional to A,©.
Consequently, one needs only to compute that coefficient. Unfor-
tunately, the exact solution is not only a difficult but also a very
expensive numerical task. Therefore, pending further numerical
study, the author in this paper must settle for the evaluation of
A,© from a truncated system.

The Approximate Coefficients A,(®

For the numerical calculations, we employ the approximation
discussed in Appendix 3 and furthermore, restrict ourselves to the
main contribution of equation (72) which comes primarily from k
=0andj =0,i.e.,

5 o 22 - () ()]
cos (Buh)[
2(m —

x cos (B,h) cos (B,2) — — 2 + m cos? (B,h))

(78)
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Table 1 Coefficients A, for » = 1/3 and (c/h) = 4

S (6 B (6

1 2.65720184-04 —9.03913332-03
2 2.65719806-04 9.03913239-03
3 1.61273938-04 —2.22927507-04
4 1.61273985-04 2.22927492-04
5 3.47861974-05 —2.97662441-05
6 3.47861928-05 2.97662514-05
7 1.12677765-05 —7.29232636-06
8 1.12677776-05 7.29232192-06
9 4.65317754-06 —2.46500667-06
10 4.65317822-06 2.46500579-06
etc.

x cos (B,2) — mp,z sin (B,2)] [2 -2k (%) K (%C>:|

i

e (3) [ - (%)

TP
x K1< )]cos (og,z)} = _Z_CQ;CZ |z| =& (78)
(Cont.)
and®
ZA Of(m — 1B2* + cos (BA)[(3m — 2
— m cos*(B,h))(cos (B,2) — 1)+ mp,z sin (B,2)]} = 0;
|z| = n. (19)

Defining now the roots B2, 84, B, - - . to be the complex conju-
gates of 1, B3, Bs, . .., we conclude that the unknown coefficients
A A0 Ag©®  must also be complex conjugates of A;©),
A0, A5
(79).

For the solution of the foregoing system, we use the method dis-
cussed in reference [8, pp. 54-56]. Specifically, we expand the
functions cos (8,2) and $3,z sin (8,2) in terms of cos (anz) and
equating terms we recover the following infinite system of equa-

tions:
S ra -y - g [ (%)= (%)}
L R
~(m + 1)a,,2][—211( )K1 (5—;)]
+ 2ma,? [1 - 2I (—j‘-)fﬁ (azc):l}

iA,,“”{ )(th) + 2(2m - 1)
=1

0,

Il

+ (3m — 2 — m cos® (B,h)) cos (B,h)}

3 0) 1 1 m ﬁuz —
2.4, 3"2){25 PRl T m o 1B - ozﬁ)z} =10
(80)

It should be pointed out that the foregoing system is extremely
sensitive to even small changes of the coefficients. As a result, the
methods of “collocation” and “least squares” led us to a noncon-
vergent solution. The aforementioned method, however, furnishes
us with coefficients that do converge as the number of roots used
increases, Fig. 1.

5 The reader should be cautioned that the second derivative of equation
(79) may not necessarily be zero at z = +h. In fact, we will show later that at
those points the second derivative has a weak singularity.
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L
[¢] 20 40 0 100 120 140

-9} -

=7k 4

~6 1 I 1 ! 1 1
[¢] 20 40 60 80 100 120 140
NO. OF ROOTS

Fig. 1 Typical convergence of coefficients A,(°) for » = %3 and c/h = 4

To satisfy equations (78) and (79) exactly, one needs to know
the coefficients 4,(?) accurately to many significant figures. This
can be seen in Figs. 2 and 3 where we compare numerical results
corresponding to 120 and 250 roots. As the reader can see, the dif-
ference, is noticeable even though the coefficients have changed
only slightly. In Table 1, we show the first 10 coefficients 4,© cor-
responding to 250 roots and ¢/h = 4.

It is now time for us to examine the behavior of equation (79) at
the two end points z = +h. To accomplish this, we define

5© = 34, cos [ahe] (81)
and rewrite the equation in the form
(m = DAL + 9 + f(1 - 9] + FLA - /(L + 9
+ 1+ 9r1- 9]+ A+ B=0, (82
where
t=7 A=m- 24080
v=1

B = —iA,,“” cos (B,A)[3m — 2 — m cos® (B,h)]. (83)
v=1

This is a difference-differential equation the solution of which is
easily found (see Appendix 4) to be

(o — 1)*

FB = C2 - 9% - g Cift + B, (89

with Co and B as arbitrary constants.® Or, in view of our original
notation, equation (84) becomes

© 2=2/m
22 A, cos (B,h) cos (B,2) = COKI - %)
v=1

2-2/m _ 12 2 -
+ (1+§) ]-2;%%2—”co<1+-27>+23.(85)

Tt is now clear that equation (79) may not be differentiated twice
with respect to z in the neighborhood of the two end points.

6 The constant Cy is to be determined from equation (78) while B is inde-
terminate.
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Fig. 2 Numerical results for equation (79) withy = % and c/h = 4

=15 T T T T T T T T T T

/—250 ROOTS

-0 Z N Z - - - )\/I/\T‘
\<—— 120 ROOTS

-05- .

0 | | 1 1 1 1 1 1 1
O O 02 03 04 O5 06 07 08 09 10

)

Fig. 3 Numerical results for equation (78) with v = % and c/h = 4

Stress Field Ahead of the Crack Tip
The stresses ahead of the crack tip may now be expressed in
terms of the following four types of integrals’

M= [rtse fe
0
—- szs+ 77 e~ 2+5,,2|,,|} cos (xs)ds (86)
o 2 2
M, = j; Ji(sc){(s2 + %’— —%”— s|yt> gl

— sVs? + B2 e'*sz*ﬁvz'”'} cos (xs)ds (87)
) [
M; = fo Ji(sc)e=stl-isigs = —‘/ECE ei(i) + 0(e%) (88)

M4 - |37| fwle(sc)e-slyl-isxds
0
3 ;
_ _% %[ei(a) - e'(‘r-’%)] + 0(e" (89)

Unfortunately, the first two integrals we have not as yet been able
to evaluate in closed form. However, inasmuch as we are primarily
interested in determining the order of the singularity which pre-
vails in the neighborhood of the point where the crack front inter-
sects the free surface, one may consider h to be large enough so
that an asymptotic expansion for small , is justifiable.? In effect,
this is analogous to perturbing the solution about the well-known
plane-strain solution. In view of the foregoing and by virtue of
equation (85) the stresses and displacements are found to be
(i) Stresses

7The higher-order Bessel terms of equation (71) contribute to stress
terms of O(el/2).

8 By analytic continuation, this may now be extended to be applicable for
all B,’s. Alternatively, one can easily show by contour integration that My
and Mj are of the O(e) for all y — ¢ sin ¢ and x — ¢ + ¢ cos ¢. Thus equa-
tions (90)-(98) are valid for all (¢/h) ratios.
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R (e g )

h h
= %sin ¢ sin (%(;—S)} + 0(h (90)

0, = EOA{ <1 _1§>zu + (1 +1§)?"’/2£<—{% cos(%)
h

+ %sin ¢ sin (%)} + 0(¢) (91)

0, = V(_TOA{<1 _1%>2v + (1 :2)2‘;]
X ‘/zi—scos (-g-’) + 0(¢% (92

(c) _ = 1 1
Ty = oA {( Z2v+ zﬁ}
1——) <1+—
h h
; )
X

(c) —
Tyz

|
|
<
Q
(=]
>

f
1 _ 1
{(1 - Z)m (1 ! %)2”1]
X 1/62—? {% sin ¢ cos (g)} + 0(e") (99

— A 1
S ()

h

x 75 {(1 — 20) cos (g) +—;— sin ¢ sin@)}

+ O(e’) r + e< z< h—2¢€ (95

(ii) Displacements

- A 1 1
u(0)=00ﬁ{ Z 27"‘ z ZV}
(-i) (+3)

sin ¢ sin (—‘3)} +0(e)) (96)

2

X
ST
——
3
AN
[\
Q
o
wn
SN /N
(SRS
S——
+
DO =

X 1/0;6 {2<m ;1 1) sin<§>
= % sin ¢ cos<§)} + 0(e) (97)
w =0+0€) (h+e<z<h-¢ (98
where we have defined

C
=0
~ lim C,° (99)
’l—tﬁ
The constant A is a function of the Poisson’s ratio v and c/h. Its
behavior? for » = % and various crack size to thickness ratios is
given in Fig. 4.

It is interesting to note that as h — « one recovers precisely the
plane strain solution. Also, as v — 0 the usual 1/v/e singularity is
recovered and furthermore the stresses o, 7,,(, 7.,(¢ do van-
ish. In fact, this is the solution of plane stress.

Finally, the author would like to emphasize that the relations
(90)—-(98) are exact for all =h + ¢ < e < h — ¢, ¢ being the usual cy-
lindrical radius around the crack tip. This point will be discussed
further in the following section.
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Fig. 4 Stress coefficient A versus (c/h) withy = Y

The Stress Field at the Corner

One of the academic questions that has defied researchers for a
long time is the order of the singularity that prevails at the corner
point. Thus, in order for us to study the stress distribution in the
vicinity of that point, we introduce the local spherical coordinate
system defined by the transformation

X —c = psin 0 cos ¢ = € cos ¢,
y =psinfsing = esing, h — z = p cos A, (100)

Initially, one is tempted to substitute the foregoing transformation
into equations (90)—(95) and thus recover the desired stress field.
For example, the stress o,(© may read

- rVe 1 (

~VOA V2p 7% cos™ 6v/sin 6 cos

Furthermore, one may deduce that all stresses, including 7. and
7y2(¢ which are nonsingular in the interior portion of the plate, are
proportional to p~(1/2+2v),

A closer inspection, however, reveals that the stress ¢,(@, for ex-
ample, becomes infinite as §# — 7/2. This of course contradicts one
of the boundary conditions and immediately suggests that some-
thing is wrong with the solution. But this is not quite true. A care-
ful investigation shows that terms of the order O(e~1/2+273,2n) n
= 0,1,2, ..., also contribute to the same order of singularity and
consequently must be accounted for.

To establish, therefore, the complete #-angular dependence one
must return to the exact expression; i.e.,

o, g) +... (101)

m

5 BB sin (B7) cos (B,2)
v=1
= (B,2) cos (B,h) sin (B,2)]
x J, S e /e cos (xaas, (102

O.z(c) e -

which in view of the definition

I = 21 cos [B,(h + 2)] _
V=

] g se--/s2+Bu2|y|

0 gzu Vst + BuZ

may also be written in the simple form

X cos (xs)ds, (103)

O.Z(C) B 1 33[_ 531"
26~ T2 - 2v) {(h — g~ + A E'ZT}‘ 8

It remains, therefore, for us to evaluate the function I.. With this
in mind, we substitute equation (71) into equation (103) to obtain

L = i cos [B,(h + z)]fﬂ° {AV(O)Ji(SC) + Ay(i)izﬂs_c)
v=1 0

(sc)
- /524,21yl
(21 J3(80) st Y
+ A, (s + } a—y cos (xs)ds. (105)

9 The reader should realize that A is proportional to 4, and as a result
Fig. 4 reflects the value as computed from the truncated equation (78). The
exact behavior, of course, should be determined from equations (72) and
(75). The author intends to do this as soon as research funds are secured.
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The function I+ may now be expressed in terms of a new function
07, defined by

O = 3 4,9 cos [B,(h + 2)]
v=1

-V/s248 |yl
le(sc) cos (xs)ds. (106)

It is now possible to evaluate explicitly this new function @I, (see
Appendix 5) to bel®

Cy, /T ¢ .
0y — _ =0 2va2 o 22V
L=-3 /2€ n*-? cos (2 ){[h F z — ie]

+ [rF 2z + ie]*} + R, (107

where Rp, here and in the following, will represent the remaining
terms leading to singularities of a lesser strength.

Returning next to equation (105) and utilizing property (74) of
the Bessel functions one finds after some manipulations!! that

L = i ALY cos [B,(h + z)]f”Jl(sc)
0

2
- () E) [+ o (B
)

o
s* <+ B,
2 4 cos (g0 + 2] [

v=l
2 _ gaTm o fohm
X J1(sc)[s SZB” ] f;s a Bﬁyr cos (xs)ds + R,
(108b)

The author now believes that due to the convergent character of
the series (108a) one may also write

cos (xs)ds + R, (108a)

L =YL+ (- V) J'J'(O)dedx

(3

in view of which the stress o,(® now reads

- V)a_zlfjff(o’l*dxdxdxdx +....+ R, (109

1 33(0)[
(c) _ _ = — -
T A { 923

+ (1 - ) a—ajg [1Ldxdx + . . } + ﬁ (h + 2)

83(0)[ 35 0
x 12t + (1= ooy [[Vdxdx + .. .}+ R,. (109)

10 The reader should also notice that in terms of the spherical coordinates
around the corner point z = h,

]
o7 — _CO\/Epa/z-zuhzu-zcos (2 cos [(2 — 2v)0]
é sin ’
+ R, I =0 + R,
11 At first glance, it seems that only the first term gives a contribution of
the order p3/2=2v. However, a closer inspection reveals that the terms A,2),

A, @, etc., also give contributions of the same order. This can be seen from
equation (75¢). For example, when k = 1

S ADa) = 3 AD(B,0%,02).
v=1 v=1

Thus, if one lets

(2) ,‘A ) 4 pA (2)

where pA,®2 corresponds to the particular solution, he finds that

A = (22 1)(5,0%,9, ete.
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It is appropriate at this time to investigate the asymptotic behav-
ior of the stress ¢.(¢ (i) in the interior portions of the plate and (it)
in the neighborhood of the corner points.

(i) Inner Layers. That is the region where —h + e <z <h —
e. Expanding the first terms in powers of ¢/(h — 2) and the last
terms in powers of ¢/(h + z) one notices that only the first term of
the expression inside the braces contributes to the singular portion
of the stress. In fact, one recovers precisely the result of equation
(92). We now have, therefore, a better understanding of the type of
expansion that equations (90)-(98) represent.

(ii) Outer Layers. That is the neighborhood of the corner
point z = h. In this case, all the terms inside the first braces con-
tribute to the same order of singularity p~1/2=2", The terms inside
the second braces, however, contribute to less order singularities
and consequently may be neglected. Thus, using the spherical
coordinates (100), one may write

) hz” cos 6 cos [(2v + 1)6 ¢
oz( = uaOA/E w/sT[n i ] cos (5)
(1 -

- Z_(T_—Z—V)(h = Z)gz—sff“”l_dxdx + ....+ R,. (110

Although the remaining integrals cannot be evaluated explicitly, it
is rather obvious that as z — h the terms of the order p=/2-2" do
vanish.

The reader should furthermore notice that as v — 0 ¢,(@ — 0,
for the third derivative with respect to z kicks out a factor of ».

In a similar manner, the complimentary displacement function
w( becomes

@_ 18L _h-2 o4 1
2 8z 2(1 — 2v) 922 2 az

+ ——((’; * ;)V)ﬂg +R. (111)

It’s asymptotic expansion in the inner layers gives precisely the re-
sult of equation (98), while in the vicinity of the corner point z = h

w

e cos
) _ ﬂ)_:' ‘/E w1/ 2.2 ( )
w [4G A‘ P h P VW{COS 6 cos (21/9)

~ cos [(2v - 18]} — (%){ﬁ [ 107 dxdx

_ 4
+ H%‘ [0 dxax + . . } + R, (112)

In summary, it is evident from the foregoing that in the vicinity
of the corner point the displacements are proportional to p/2-2
and the stresses proportional to p=1/2-2, This result, however,
seems to be somewhat unorthodox inasmuch as for certain Pois-
son’s ratios the displacements become singular at that point. Phys-
ically, what the solution really shows, is that linear theory is inade-
quate in predicting the actual behavior of the material at such cor-
ner points. Be that as it may, we observe that the strength of the
singularity is such that the local strain energy is finite for all v < %.
This of course is not coincidental. In fact, singularities of such
strength have also been observed in diffraction theory. In this case,
the questions of existence and uniqueness of such type of solutions
have been discussed by Bouwkamp [9], Heins and Silver [10], and
Wilcox [11, 12].

Following reference [11] one can show [13] that, in the field of
elastostatics, solutions that do satisfy the condition of locally finite
energy are unique.

Finally, it remains for us to show that the solution satisfies the
remaining boundary conditions on the plate faces z = +h. To show
this, we define the following functions:

" Bt
T* = ;m_ 1) VZﬂ—Q—”—M r—p3 08 (,2)

1" se¢32+ 21yl
f_f = cos (xs)ds (113)
Vs
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1-v
E=fop Lt
1 24 24
= ———— — — = + —= &
Y=o ZV){(h A%z~ R+ 82}' i

in view of which the complementary displacements may now be
written in the simple form

© _ 8 (s _ g+ fxazq +
9 aT*
) — = — - — +
v 5 (¢ - ¥ 5y R, (116)
W = -2 (@ + V) + R, (117)

The stresses 7y, and 7,,(% can now be computed as

P L L ¢
G T ayaz  oydz ' G
LY 9%(2)
- fo s dr — Heel. (119-(119)

Now in order to examine the behavior of the above stresses as z —
h, one must either determine explicitly the harmonic function 7T*
or express it in terms of the function I.. The latter can be accom-
plished with the use of the relation

= fITJo(th2 — |y|Ye-entar, (120

e s2raplyl

Vst + q,l

and the residue theorem. In particular, one can show that!2
% T o

o5 Cat et

n=1 (sz - anﬁz \/82 + dnz

cos (a,2) = [B,h sin (B,h)

e-Js2+B,,,2IyI
X cos (B,2) — B,z cos (B,h) sin (B,2)] \/_TTF
S 14
9¢-slvl e-\/SZ'l'BVz[yI y
=== - B, cos (B,h) cos (B,2) T o [\/sz —y
1 h <
] st [T

dRdt,

“ sin (R{) cosh (R?)
x fo G (121)

,° + R%? sinh (RR)

and consequently that

92T 1 LA 021, }
oyoz 1 - 21/&{(}1 Rl U Y-
1 33 931, 8 h <

. = + - 5 SRS, S 4

+1—2Vlyl{_8_25 8—25} 1—21/11%316”

©

T o2 © I
s—z"s cos (xs)—a—y—z{fl lJO(S 2 — |y|?
y

o J‘” R sin (Rf) sinh(Rz)
o (B, + RH? sinh(Rn)

Unfortunately, the author has not as yet been able to determine
the last harmonic function explicitly. Consequently, he is unable to
compute the remaining stresses and displacements. However, the
derivative of the function with respect to z, at z = +h, can be eval-
uated since

<,

dRdt } (122)

| E R - (3) (7)™, o

12 The reader should notice that equation (121), together with its first and
second partial derivatives, is valid for all |2| < h. However, its third deriva-
tive with respect to z—or with respect to y for that matter—is only valid for
|z] <h.
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that is,
o2T* 1 (321
A -
9y9z 1 -2 ayaz),_,,
1 'L 831,] 2 S
" 1—2u|y|[a_z3- CE S w3

(2.2
=T, se™/s sl

X —gz_;\/——z——:—-—w COs (xs)ds + R"

0

(129)
But from equation (103)

3 ©
%3[1_ + 1,] = 2)_B,% cos (B,h) sin (B,2)
v=1

=T se-/s™80l5l
= (xs)ds (125)
X , szm—r COos (xS

and therefore

83 LY T se-Jsz-l-szlyl
i ——s + T 4 f —v
113;1 == [I. + 1,] 221 B, . S VTR cos (xs)ds.

(126)

Substituting this result into equation (124) and subsequently into
equation (118) one clearly sees that

T (c)
(_W_) —s 0.
G z=h
It remains finally to show that the other stress 7.,(® also van-
ishes at the plate faces z = +h. To do this, one must determine the

behavior of the function
x 33T*
fo ay%z ¥

as z — h. Unfortunately, here one may not use the same steps as
those of the stress ‘ryz(c) because the integrand now corresponds to
a third derivative with respect to z. Consequently, the evaluation
of the integrand at z = h is not permissible. What this really means
is that one must integrate first with respect to x and then take the
limit as z — h. The actual details of this, however, are very diffi-
cult—at least as far as the author is concerned. But our solution
was constructed in such a way that this should be the case.- This
can be seen from equation (57) for as z — h, 7,,(“ — 0 in view of
equation (40).

Finally, one may compute!3 the total strain energy stored in the
system to be

— 2)g 2.2
W s (1 — v¥)o,2c?(2h) 1+ 2v 1
E 1 -2y g’—cz)
2G
B,c B,c
y = | K (%
3 3 1 el (7'2') 1 72‘)
(R)p 2 -
X I;,,,ZQAV Bv 2k¢1(k + 1)! (Bvc)k )
V2
(127

from which the two well known limits may now be recovered,!* i.e.,

=i 9.0
Wihao + — 30—7%(—2@ ; generalized plane stress

and
= a0
Whaw —> EO%VZ)(%); plane strain.

13 Use equation (53), the approximation of Appendix 3, and the relation

1 h s C . . "
W=-3 " j-c {(v* = v)e0, ), 0dxdz.

h
14 Use f . equation (72) dz for j = 0.
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APPENDIX 1

The roots of the equation sin (28,h) = — (28,h).

The equation has an infinite number of complex roots which ap-
pear in groups of four. However, as it was pointed out in the text,
for this analysis only the roots with positive real parts are perti-
nent and furthermore, the only real root 8, = 0 must be discarded.
Thus, if we define the roots B2, B4, Be, - . . to be the complex conju-
gates of the roots 31, 83, Bs, - . ., then by setting

2Bh = x, + iy,; v = 1,3,5...

and using a Newtom-Rampson numerical method one finds

14 XV y v

1 4.21239 2.25073

3 10.71254 3.10315

5 17.07337 3.55109

7 23.39836 3.85881
etc.

Furthermore, the asymptotic behavior of the roots for large v, i.e.,
for » = 15,17, 19, . . ., is given by the following simple relations:

~ I ~ - l)]
xy_(}/+2)ﬂ, Y, = cos h [(V+2 .

APPENDIX 2

We list the Fourier series expansions with their corresponding
range of validity as follows:

0
zt = Z
n=1

h =2z =h

cos ,2); —
ﬂ
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sin (B,k) , 2B, sin (B,h) (-1)"
cos (B2 = =55 S
X COS (a,,z), =z =h
z sin (B,2) = 2o (B _hBhEV o8 (B
S . Jsin (B,h) B2 + &
+23 (D {ente B, o
— cos (B h)——gB"—g} cos (a,2); —h = 2z = h
v Bv —— a" n )
sin (B,2)

_ 2 sir;l(ﬁuh) i (_21)_"02 g sin (@,2); —h < 2 < h
Z {cos (B,h)

BI - a
_ 2B,k sin (BA) \(_qynpy o o
W8T — }( V'a, sin (a,2); -k < z < h

® _q)n
Tl
ﬁ h cos (B,,z) — sin B,,h)
28,% sin (B,h)

z cos (B,2) =

2| =

cos (a,2)

© (_l)nB 2
2 BT b
_ B/hz sin (,2) — 2 sin (B,,h) + B,k sin® (B,h) cos (ﬁl,z)
48, sin (B,h)

g_z—amm( BE_IZ" aﬂz cos (a,z)

B,,zhz sin (B,2) + B,,h(sm (B,h) — 2) cos (B,2). |l
48,% sin (B,h)

lz| =n

A
S5

APPENDIX 3

Consider the solution of the following dual set
f sg(s;B) f(s) cos (xs)ds = —1; |x| < ¢
0
f f(s) cos (xs)ds = 0; |x| > ¢
0

for the unknown function f(s). The function g(s; 8) is assumed to
be continuous for all values of s and 8 and furthermore for simplic-
ity B to be real. We now assume that the solution can be written in
the form

i A(n) Jm-l(sc) .
=0 (sc)™!

f(s) =

The advantage of such a form is that it satisfies the second equa-
tion automatically and furthermore, if one defines

= fwf(S) cos (xs)dx; |x| < ¢,
0

it shows that v(x) can be written as

— i Al

n=0

v

n+l/2
e g
iy <n + = >

)
c
2

In the field of fracture mechanics, for example, the physical signif-
icance of the function v(x) is usually the vertical displacement
along the crack face and consequently such an expansion is plausi-
ble.

Returning next to the first equation one finds
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_,1(30)

5 (n)
HZ=;A J;sg(s ﬁ)( o

and upon multiplying both sides with

cos (xs)ds = -1; |x| < c.

1 k+1/2
zkr(k + 3/2)‘/—(:2’“2 C x?-)

and integrating with respect to x from 0 to ¢

2 A‘"’L sg(s; B —"——r*‘)(,.sf)—*ﬁ—i)(ksf)

n=0
1

=g sy £ = L2

If we now define
J setos Tt Geled

then the unknown coefficients A are to be determined from the
following infinite system of algebraic equations:

P, k(B =

1

(G ¥ 1)!; k=0,1,2....

2, A, (B) = -
n=0
The questions of existence and uniqueness of solutions of infinite
systems of equations have been studied and the results are dis-
cussed in reference [8, pp. 20-44]. The conditions, therefore, that
one must impose on the function g(s, §) are the following:

1 The integrals hp () must exist.
2 The coefficients hy £ (8) must be such that the resulting infi-
nite system of equations has a unique solution.

As a first example, we let g(s, 8) = 1 the solution of which is well
known. In this case, the integrals

hn,ho = J‘

1+1(8€) Jpu1(sC)
(sci)"+ (sc)** s
B (l)nﬂzﬂ 1
~\2 cklnln + B + 1)

and our infinite system therefore reads

A(n) 1 n+k+l 1
7(5) Elnl(n + £ + 1)

n=0

1

~FG T k= OLS..

The solution of the foregoing system is

A® = _¢2and A™ = 0 for n = 1,

which of course leads to the well-known solution

2Jl(sc)

fls) = ), -

As a second example, we let

S

i
which gives

Jmi(sc) Jk+1(sc)d
(sc)ml (sc)lul

h . f s 3 ] == 2 E
) = f s
But hpr(8) < h%; (numerically) therefore from reference [8] we
deduce that there exists a unique solution which converges as the
number of terms increases.
The aforementioned integrals may be evaluated approximately
if one uses the following identity:
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B 1
1_s“=2+62 i 1
eg T ilary

s
. -
[ Vsz+62]

Furthermore notice that for large 8 one may replace the expression
inside the brackets by 1, hence

@
T )

1 =

The reader should furthermore notice that this is a well-known
numerical approximation which is fairly good for all values of 8. It
is an easy matter now to show that ho,, for example, becomes

Ro,o(B) =~ {% - I <%)K1 (%) } .

APPENDIX 4

In order to solve the difference-differential equation (82) we use
the following relation

re _fe

] w2 s

Thus the homogeneous equation may now be written as

(m-Dlf(1 + ¢ + 71 - 9]

m. L ffL+ 8 . fA- g
+ 5 g2){1+£)2+(1—§)T

[ o) (=]
(1+79 Q-4 >
where the prime represents differentiation with respect to the

arguments. Finally, simplifying and integrating with respect to ¢
from O to { one finds after some very simple manipulations that

F1+ 9
1+9

_f(1—g)=_f“‘L(_£_) 1 M dt.
1

-0 < E |[ET T2

It is now evident that

“)

2—5

W G
E|e"

- {1y,

which consequently leads to

f(& = Cy2 - o>

To this, of course, one must also attach a particular solution.

APPENDIX 5

In order to prove equation (107), one must first find an asymp-
totic expansion for the integral

Me;p) = f Jy(sc) ‘7#37 Sstas, s cos (xs)ds

when |y| = esin ¢ and x = ¢ + ¢ cos ¢, € being small and positive
quantity. Recalling next that

M(e;0) = — /7cos (¢>+O
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and noticing that the function M satisfies the equation 232 dg 4
¢ : 4 M=—/£cos (?>{1+€B”+EB”+...}
9 9 2¢€ 2 2! 4!
M | M _ o, o
o eyt AM =0, + 0(e).

one looks for an asymptotic expansion of the form Thus equation (106), after the summation over v is carried out,
- leads to the result of (107). Notice that the O(1/€) terms will lead
M = ZA,,G"'” FAGCH R to singularities of a lesser strength for it represents a series with
n=0 terms such as
Substituting into the differential equation and equating powers of

e one has Ve, Vee?s,?, Veelp,t, ete.

Me[E colltep) ooff) epoz)



