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Fracture in Pressure Vessels

E. S. FOLIAS

A survey of existing exact solutions describing the stress
distribution around a crack tip in an initially curved sheet
is made, and a method for estimating the stress-intensity
factors of more complicated geometries is discussed.

With a Dugdale-type model, the size of the plastic zone
ahead of the crack tip is estimated, and a fracture criterion
incorporating geometry and plasticity corrections is sug-
gested. This criterion predicts failures in pressurized vessels
of arbitrary shape by knowing only shell geometry, mate-
rial properties, and crack size. A comparison with some
of the experimental data in existing literature substanti-
ates the validity of the fracture criterion and its potential
use.

INTRODUCTION

It is well known that initially curved sheets containing through cracks have
a reduced resistance to fracture initiation. Consequently, a crack in the walls
of a pressure vessel can severely reduce the strength of the structure and can
cause sudden failure at a nominal tensile stress less than the material yield
strength. Therefore, to ensure the integrity of a structure, the designer must
be cognizant of the relation that exists among fracture load, flaw shape and
size, matrial properties, and structural geometry. A relation of this kind is
called a fracture criterion and can be derived by the application of the theory

of fracture mechanics.

For the derivation of a fracture criterion two ingredients are necessary:
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484 FRACTURE IN PRESSURE VESSELS

a knowledge of the stress distribution due to the presence of a crack, and an
energy balance for crack initiation. Accordingly, in the first part of this chap-
ter, a review of past work on initially curved sheets dealing with the stress
distribution in the vicinity of a crack is given, and in the second part a fracture
criterion with which one may predict fracture in pressure vessels is discussed.
Finally, a comparison of the theoretically predicted values with some of the
existing experimental data is presented.

STRESS DISTRIBUTION IN THE VICINITY OF A CRACK .

GENERAL THEORY

In the following, we shall consider bending and stretching of thin shallow
shells, T as illustrated in Fig. 1 and described by the traditional two-dimensional

qlx,y)

Figure 1 Initially curved sheet.

- linear theory. Such a theory is appropriate in view of the “thinness” of the
shell. We shall limit our consideration to elastic, isotropic, homogeneous,
constant thickness, shallow segments of shells, subjected to small deforma-
tions and strains. -

The basic variables in the theory of shallow shells are the displacement
function w(x, y) in the direction of the z axis (see Fig. 1) and a stress function
F(x, y) which represents the stress resultants tangent to the middle surface of
the shell. Following Marguerre (1938), the coupled differential equations gov-
erning w and F, with x and y as rectangular Cartesian coordinates of the base
plane (see Fig. 1), are given by

+ According to Ogibalov (1966), a shell will be called shallow if the least radius of curva-
ture is greater by one order of magnitude than the linear dimensions, i.e., L/R << 0.1, and
thin if h/R < 0.01.




E. S. FOLIAS 485

o 9w, 0w 0w, %w 92w, 0%w
VF = B 2 B oxoy TR G G ] (12)
0:F 0*w, | 0*F d*w, , 0°*F d*w,

B TTITIT TR e T o ey

DViw = —q (2a)

where w(x, ») describes the initial shape of the shell in reference to that of a
flat plate.

FORMULATION OF THE STRESS PROBLEM

Let us consider a portion of a thin, shallow shell, of constant thickness
h, subjected to an internal pressure ¢(x, y) and containing a crack of length
2c (see Fig. 2). Our problem is to find two functions F(x, y) and w(x, »)

q(x,y)

Figure 2 Initially curved sheet containing a finite line crack.

satisfying the differential equations (1a) and (2a), and appropriate boundary
conditions. We require that (1) on the faces of the crack, the normal moment,
equivalent shear, and normal and tangential membrane forces vanish, and (2)
away from the crack, the appropriate loading and support conditions are
satisfied.

In treating this problem, it is convenient to seek the solution in two parts,
the undisturbed or particular solution which satisfies Eqs. (1a) and (2a) and the
loading and support conditions but leaves residual forces along the crackf,
and the complementary solution which precisely nullifies these residuals and
offers no contribution far away from the crack.

Itis evident from Egs. (1a) and (2a) that a theoretical attack of the general
problem for an arbitrary initial curvature presents formidable mathematical
complexities. However, for spherical and cylindrical shells, exact solutions
have been obtained in an asymptotic form. For other more complicated shells

‘results can be obtained by a proper superposition of these two solutions.

T For more details, see Folias (1964a).
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Spherical shell. For a shallow spherical shell the radius of curvature
remains constant in all directions; therefore,

d*w . J*w 0wy 1
G- R (38

Substituting Egs. (3a) into Eqgs. (1a) and (2a), one obtains Reissner’s equations
B+ vir =0 (1b)

1 q

4 -~y — 49
V4w R DV F D (2b)

For a spherical cap containing a crack of finite length 2¢ at the apex
(see Fig. 3), the author (Folias, 1965a) has reduced the problem to the solution

TOP VIEW

/ I SIDE VIEW
z

T X __-ﬁ———-l CROSS
SECTION

Figure 3 Geometrical configuration of a pressurized spherical cap.
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of two coupled singular integral equations. The solution was sought in a
power series of 4, where 4 was given by

1= (B)" =020 - pel i) g = 02 - v g @

Furthermore, the author has shown (Folias, 1964a) that for A less than a
calculated bound the series does converge to the exact solution.

It is clear from Eq. (4) that A is small for large ratios of R/A and small
crack lengths. As practical matter, if one considers crack lengths less than
one-tenth of the periphery, i.e., 2¢ < (2nR/10), and for (R/h) < 10% a cor-
responding upper bound for A can be obtained, i.e., A < 20. For most prac-
tical cases we have 0 < A < 3. Consequently, an asymptotic expansion for
small A is justifiable.

Without getting into the details, the stress distribution around the crack
tip for a symmetrical loading? is

Extensional stresses—through the thickness:

() ot teB o o
o) et T
g = po() (—goin g+ ein ) 007 "

Bending stresses—on the “tension side” of the shell:

R 1/2(_3 —3v 6 1—v 5_6) 0
o =P <2r) g 7 s 7) +0¢%) ®)
/ _
() (g ) w0
12 7 o l—v . 5
o r(g) (T L) e
where

_ 3n —y (A0 — )2 [T
(e) — gle) ) [ AL Sl S S R
Ps =0 {1"*_3212} +0 31/2(4_v0) {32

s %(,, 24y %)} 4 0(A*In A) (11a)

+ For antisymmetric loadings, see Folias, 1964a.
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and
i 22(317) 8 — Ty, . 4— 3y i
(b) — __ Fle) —
B = =0 —v2)1/2(4—v0){ - VA 4>}
¥ 4 — 3y, A2 "
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It should be emphasized that the stress coefficients in Eqs. (11a) and (12a)
contain terms only up to 0(42); hence their use is limited to small values of the
parameter A, in particular A < 1. If one wishes to know the stress coefficients
for large values of A, it is necessary to consider higher-order terms in order to
guarantee convergence. This matter was investigated by Erdogan and Kibler
(1969), who, with the aid of a computer, were able to extend the results of
Folias (1965a) to A < 5.5. Thus, for a Poisson’s ratio of 1, an alternative
form of the stress coefficients good up to A < 5.5 is

Pﬁe) — O_'(e)A§£) _ 0_540-(b)a§e) (133)
PO = 1.8169a® — 0.306® 4® (14a)

where the coefficients 4, A®, a®), and a® are functions of A and are given
in Table 1 or by Figs. 4 through 7.

TABLE 1
Sphere
2 AL AP al) al®)
0.2 1.0112 1.0020 0.00842 0.00611
0.4 1.0422 1.0070 0.02249 0.01693
0.6 1.0887 1.0137 0.03749 0.02919
0.8 1.1479 1.0211 0.05202 0.04186
1.0 1.2174 1.0287 0.06557 0.05448
1.2 1.2956 1.0364 0.07799 0.06685
1.4 1.3812 1.0439 0.08935 0.07886
1.6 1.4731 1.0512 0.09964 0.09045
1.8 1.5706 1.0583 0.10895 0.10155
2 1.6729 1.0652 0.11740 0.11216
2.2 1.7795 10718 0.12519 0.12223
2.4 1.8899 1.0783 0.13228 0.13172
2.6 2.0038 1.0845 0.13876 0.14058
2.8 2.1208 1.0905 0.14475 0.14879
3.0 2.2408 1.0964 0.15030 0.15630
3.25 2.3947 1.1035 0.15668 0.16463
3.50 2.5526 1.1103 0.16260 0.17172
3.75 2.7143 1.1170 0.1681 0.17751
4.00 2.8796 1.1233 0.1732 0.18194
4.25 3.0485 1.1297 0.1780 0.18483
4.50 3.2208 1.1357 0.1826 0.18644
5.00 3.5750 1.1470 0.1905 0.18493

5.50 3.9446 1.1580 0.2000 0.17802
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Figure 6 Stress coefficient for a sphere. (According to Erdogan and
Kibler, 1969.)
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Figure 7 Stress coefficient for a sphere. (According to Erdogan and
Kibler, 1969.)

a'®) = 0.54J;

Flat plate. A flat plate represents a degenerative case of a spherical cap
when the radius becomes infinite; therefore,

2 2 2
Pw,  Pw,  0Pw,

dxdy dx2  dy? _0> (3b)

Substituting Eq. (3b) into Egs. (la) and (2a), one recovers the classic equa-
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tions for a flat plate, i.e.,
V4F =0 (1c)

Viw = —% (2¢)

The problem of a flat plate containing a finite crack subjected to a lateral
load has been investigated by many authors for various types of loadings.
The solution, however, can also be obtained from that of the spherical cap by
letting R — oo or A — 0. Thus the stresses around the crack tip are given
precisely by Egs. (5)-(10), where the stress coefficients now are

PO = @ (11b)
® a‘-(b)
Bfies (12b)

Cylindrical shell. For a shallow cylindrical shell, one of the principal
radii of curvatures is infinite, while the other one is constant; therefore,

Pw,  P*w, _ 4. Pwy, 1
dx 03) =52 =% 3 (3)

dy* R

Substituting Eq. (3c) into Egs. (1a) and (2a), one recovers the equations for a
shallow cylindrical shell, i.e.,

2
%’z_ngg L VAF =0 (1d)
2

Two cases of special interest immediately come to mind: an axial and a
peripheral crack. Due to the mathematical complexities of this problem,
Sechler and Williams (1959) suggested an approximate method of solution
based on the behavior of a beam on an elastic foundation and hence were
able to obtain a reasonable agreement with the experimental results. The au-
thor, however, using the same method of solution as in Folias (1965a), was
able to investigate this problem in a more sophisticated manner, and the
details for an axial and a peripheral crack (see Fig. 8) can be found in Folias,
1965b and 1967.

Subsequently, there have been two more theoretical analyses of this prob-
lem, the axial crack by Copley and Sanders (1969) and the peripheral crack
by Duncan and Sanders (1969). Their method of solution consists of the ap-
plication of the Fourier integral theorem leading to the derivation of two
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Figure 8 Geometry and coordinates of an axially cracked cylinder shell
under uniform axial extension N, and internal pressure g,.

coupled singular integral equations (different in form from the author’s),
which in turn are approximated to high accuracy by matrix equations and
are solved by the use of a computer. Their results were derived for zero
applied bending load, i.e., ® = 0, and for Poisson’s ratio, v = 0.32.

Again omitting the mathematical details (see Folias, 1965b and 1967),

the stresses around the crack tip are given also by Egs. (5)-(10), where the
stress coefficients now are

For an axial crack:

57::,1 A2 — v2)1/2{42 — 37y 6 — Sv
(e) — gle) () 0 0
Pc,a {1 -+ } +a 31/2(4 — vo) 96V0 4 16V0

) (11c)
(y+1n_)} +0(t g, A<l
s MGVY (42 3Tw, 6 vl i A
Fay = =4 (I—v)"2(4 —v ){ 9% 16 v >} (12¢)
g 120, — 5v3 — 8 A .
4_v0{1+#W i toamy, A<t

or the alternative numerical form (Erdogan and Kibler, 1969) valid forv = t




E. S. FOLIAS 493

and 4 < 8,
P, = G4, — 0.546%als) (13b)
PY), = 1.816“a%), — 0.306* 4%, (14b)

Here again the coefficients 4%, 4%, a), and a(’) are functions of 4 and are
given in Table 2 or by Figs. 9, 10, and 11. In Fig. 11 we compare, for a® =0,

TABLE 2
Cylinder
A ALL Ay, a) a?)
0.2 1.0096 0.99816 0.006161 0.00410
0.4 1.0371 0.99340 0.01695 0.01124
0.6 1.0795 0.98660 0.02897 0.01902
0.8 1.1344 0.97846 0.04107 0.02659
1.0 1.1993 0.96946 0.05283 0.03359
1.2 1.2723 0.95986 0.06406 0.03985
1.4 1.3519 0.94993 0.07473 0.04529
1.6 1.4367 0.93976 0.08482 0.04990
1.8 1.5256 0.92956 0.09435 0.05368
2.0 1.6177 0.91936 0.1033 0.05664
2.2 1.7122 0.90923 0.1118 0.05883
2.4 1.8085 0.89926 0.1198 0.06018
2.6 1.9060 0.88940 0.1273 0.06090
2.8 2.0045 0.87970 0.1344 0.06083
3.0 2.1035 0.87023 0.1410 0.06014
3.25 2.2276 0.85863 0.1488 0.05832
3.50 2.3519 0.84740 0.1551 0.05549
3.75 2.4761 0.83643 0.1629 0.05172
4.00 2.5999 0.82440 0.1691 0.04700
4.25 2.7232 0.81542 0.1750 0.04154
4.50 2.8459 0.80539 0.1803 0.03512
5.00 3.0895 0.78616 0.1903 0.02012
5.50 3.3303 0.76832 0.2005 0.00234
6.00 3.5681 0.75079 0.2068 0.02222
6.50 3.8029 0.73446 0.2137 0.04130
7.00 4.0347 0.71879 0.2200 0.06622
7.50 4.2637 0.7080 0.2255 0.09350
8.00 4.4895 0.6897 0.2306 0.12279

the results of Erdogan and Kibler (1969) with those of Copley and Sanders
(1969). The comparison is very good up to 4 < 3.3, beyond which Copley’s
results become somewhat higher.

For a peripheral crack:

0 = G A A1 —v)'2 (A +v) | A+ )
Fer =0 {1 T } TG — vo){ T, T oTen, ' TR >}
+ 0(A*In ,1), <25 (11d)
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Figure 9 Stress coefficient for a cylinder.
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. a® _ 3+ 249 gl ”
4___v0{1 A 64}+0(/1 Ini), A<25 (12d)

Here again the stress coefficients are valid only for small values of the
parameter 4, and for A > 2.5 one must consider higher-order terms. Figuw :
12 gives Duncan’s results for v = 0.32 and ¢®> = 0. Notice that for small
As (A < 2.5) the stress coefficients given by Eqgs. (11d) and (]12d) and Duncan’s
results are identical.

For an arbitrarily oriented crackt (see Fig. 13):

t Approximate stress intensity factors; for derivation, see Folias, 1969b. It should be
emphasized here that the angular distribution associated with 7@ and 7® is not that
given by Egs. (5)—(10), but similar. See Folias (1964a) for the exact solution of the antisym-
metric problem in a spherical shell.
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Figure 10 Stress coefficient for a cylinder.
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Figure 11 Comparison of the two methods for the stress coefficient of
a cylindrical shell containing an axial crack.
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Figure 12 Duncan’s stress coefficients for a cylindrical shell containing
a peripheral crack.

S=1I,, B=075.,

Figure 13 Coordinates of an arbitrary oriented crack in a cylindrical
shell.
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P = =0 =yt s
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(o) AX3'7%) 42 — 37y — 5y . cos o T/z
+7 {1 — 2)1/2(4_v0){\: 9 0+ 16 0(?+ln 3 )
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T 4— Vo 4 — vo)v, 64

T8 (5v% — 12v, + 8)V2(v2 + 2v + 5)'/* mA? }
:F4_VO{1—+— @y, @ sin 200
4+ 0(A*In A), A< (12e)

An alternative form valid only for §® = 0,v = 4, and 2 << 8is

Pﬁ‘f)ﬂ - 6(”{1 _J[_ (F(E) - l)ll Acos a + (ng)p - I)IA.:J.sin m}
:l: 1‘-(2){1 + (P(e) ll Acosa 1)1/2(13(?)17 l}.=).sinm - 1)1/2} (13C)
PE‘?L - G(E){P(b) |}. Acos a + P(b) Il Asin a}
T(e){Pg’l IA=/1 cos u)l/z(Pgl,,)p I/l=). sin u)l/z} (140)

where P = PO/G®.

Approximate stress factors for other shell geometries. 1f one chooses
the coordinate axes x and y such that they are parallel to the principal radii
of curvaturet, then

0wy 0w, 1 Pw, 1

oy~ % TR’ 9 R td)

where R, and R, are principal radii of curvatures in the x and y directions,
respectively. Substituting Eq. (3d) into Egs. (1a) and (2a), one finds

1 d%*w 1 9%w AR
Eh[R 0x2+R az]+VF—0 (le)
10F | 10F|_ q

Inasmuch as the complementary solution or the perturbed solution
presents contributions only in the immediate vicinity of the crack tip, one

+In a more general case, when they are not parallel, Egs. (le) and (2¢) will contain
additional terms of the form (92w/dx dy) and (#2F/dx dy). For the angular distribution of
this case, see the footnote on p. 494.
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may consider—at least locally—the principal radii of curvatures to be con-
stants. Thus assuming that the crack is parallel to one of the principal axes,
e.g., along the x- axis, one may hypothesize that the stress coeflicients depend
primarily on the curvatures that one observes as he travels parallel and per-
pendicular to the crack. Consequently, one may estimate the stress coeffi-
cients by a proper superposition of the results of an axial and a peripheral
crack in a cylindrical shell. In particular, for 6% = 0,

AL . Smdi

P(e%(;m{l + 7k, o } (11f)
312 42 — 37y 6 — 5v A
(b)) ~ __ (e) 2 2 y
PP~ =0 g = vo){ R T (” T ln?)

14-v,,  14+v,, A, }
+ gt lx(y + 1n§> £0AInd) A<l (120
or the alternative numerical form valid for v =} and 1 <8

POz @911 + (Pigh — D imsy + (PEY — Dli-a (13d)
PP =~ =GP imay + P& i-a} (14d)

To check the validity of such a superposition we shall consider as our first
examplef a spherical cap for which we know the stress coefficient exactly.

Example 1: Sphere. For this shell, the curvature is constant in all direc-
tions. Therefore, in view of Egs. (11f) and (12f), one has

P.(ve)%a_.(d{l—{—%2;_{—576:2—2}:6(8){1_]_%}, A<1

which is identical to the exact expression [see Eq. (11a)]. Similarly,

(31222 42— 3w,  6—5v p
T =G = vo){ s s+ g )

+ 5+ e+ g}

e (U2 —01 50, 143 2\,
- ””(1—1:2)1/2(4—%){ 32 8 (y+1n4)}

which agrees fairly well with Eq. (12a). One may conclude, therefore, that
such a hypothesis may not be unreasonable.

1 In the following examples, we have assumed that ) = 0.
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Example 2: Circular conical shell (see Fig. 14). In this case, one curva-
ture is infinite and the other finite; therefore,

For an axial crack: Pg ~ 6“”{1 + %lf}, A<l

pg~aoli+ 2l h<1

For a peripheral crack: Pg ~ & {1 + %13}, A 1

where

— — 1/2———6‘%—‘
A2 ={12(1 — v¥)} (R — ctane€)h
2 — 2 I/Z——Ci——
A ={20 =W Tameon

2= (1201 — iyl
F={12(1 — v} ITS—h

®
R3
® -/ ®
®

f B

Ry = R-ctane
Rp = R+ctane

Figure 14 Circular conical shell.

Example 3: Toroidal shell (see Fig. 15). For an axial crack in the outer
surface,

P ~ G {1 + %%l% + —6’%12} Aia <1

For an axial crack in the inner surface,

pg=aofl+Zn—Zn)  4,<!
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Figure 15 Toroidal shell.

For a peripheral crack in the outer surface,
Py ~aoft+ T Znl A, <
For a peripheral crack in the inner surface,

’ (e 5w 71
Py ~ g0 {1 — 223 +EZul A<t

DiscussioN
In view of the above, one may conjecture that in an initially curved sheet,

1. The stresses are proportional to (¢/r)!/2.

2. The stresses have the same angular distribution as that of a flat plate.

3. The stress intensity factors are functions of the shell geometry and, in
the limit, we recover th/e flat plate.

4. The stresses include interaction terms for bending and stretching.

A typical term is of the form

Oshell a a, | by 1
o 1*{‘+K+R1(RW*+i“mm“} *%mm&
(15)

where the expression inside the braces is a positive quantity. One concludes,
therefore, that the general effect of initial curvature, in reference to that of a
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flat sheet, is to increase the stresses in the neighborhood of the crack tip and
reduce its resistance to fracture initiation.

It is of some practical value to be able to correlate flat sheet behavior with
that of initially curved specimens. In experimental work on brittle fracture,
for example, considerable time could be saved since by Eq. (15) we would
expect to predict the response behavior of curved sheets from flat sheet tests.

PARTICULAR SOLUTIONS

To get a better understanding of the stresses in the vicinity of a crack tip,
we examine the following two illustrations:

Clamped sherical shell. Consider a clamped segment of a shallow
spherical shell of base radius R, and containing a radial crack of finite length
2c at the apex (see Fig. 16). The shell is subjected to a uniform internal pres-

Figure 16 Pressurized spherical cap with fixed ends.

sure g, with radial tension N, = (¢,/2)R, and, because it is clamped, we
require that the displacement and slope vanish at R = R,. For this problem
the residual applied bending and applied stretching loads at the crack aref
® = 0 and G, = ¢,R/2h. Along the crack prolongation one finds from Egs.
(6), (11a), and (12a) that the stress normal to the crack is

1/2
.06, 0) o 1js = (;7) {1 + (0.47 — 0.461In 1)12}‘%‘ (16a)

which for A = 1 reduces to

1/2
o (x,0) ~ 1.48 (70;) 2R (16b)

Closed cylindrical tank. Consider a shallow cylindrical shell containing
a crack of length 2c. The shell is subjected to a uniform internal pressure
q, with an axial tension N, = (¢,R/2), M, = 0, far away from the crack. For
this problem, if the crack is parallel to the axis of the cylinder, then 6% = 0
and 6 = (q,R/h). Hence the normal stress along the crack prolongation

+ For details, see Folias, 1965c.
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can be found from Egs. (6), (11c), and (12¢), and is

1/2
(%, 0)|,_1/3 = (%) {1 +(0.37 — 0.30In A)ﬂ}ﬁh—R (17a)

which for A = 1 reduces to

o, (x, 0) ~ 1.37(70;)”2231_" (17b) .

If the crack is perpendicular to the axis of the cylinder, then ¢* = 0 and
‘© = q,R/2h; therefore,

1/2
7,05 0o = () {1+ 020 — 015 DIRR  (182)

which for A = 1 reduces to

N c 1/2 qu
a.(x,0) ~ 1.20(5) 2R (18b)

In the event that the crack makes an angle « with the axis of the cylinder,
then 6 = 0, 6 = (q,R/4h)(3 + cos 2a), T = (q,R/4h) sin 20.. Thus the
normal to the crack stress may be derived from Egs. (6), (11e), and (12e).

A FRACTURE CRITERION

ELASTIC CONSIDERATIONS

It is well known that large, thin-walled pressure vessels resemble balloons
and like balloons are subject to puncture and explosive loss. For a given
material, under a specified stress field due to internal pressure, there will be a
crack length in the material which will be self-propagating. Crack lengths
less than the critical value will cause leakage but not destruction. However,
if the critical length is ever reached, either by penetration or by the growth of
a small fatigue crack, an explosion and complete loss of the structure may
occur. The subject of eventual concern therefore is to assess analytically the
relation between critical pressure and critical crack lengths in sheets which
are initially curved.

The principal task of fracture mechanics is precisely the prediction of
such failure in the presence of sharp discontinuities, on the basis of geometry,
material behavior, etc. Specifically, the approach is based on a corollary of
the first law of thermodynamics which was first applied to the phenomenon
of fracture by Griffith (1924), whose hypothesis was that the total energy of a
cracked system subjected to loading remains constant as the crack extends an
infinitesimal distance. It should, of course, be recognized that this is a
necessary, but not sufficient condition for failure.
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Griffith applied his criterion to the stretching of an infinite isotropic
plate containing a flat, sharp-ended crack of length 2¢, and showed that the
criterion can be expressed in terms of an integral over the entire surface of the
plate. Subsequently, Sanders (1960) has proved that this integral is indepen-
dent of the path; i.e., one may integrate along any simple contour enclosing
the crack.

Following similar lines, Folias (1970) derived the following approximate
criterion which is applicable to thin, shallow shells:

. o 2 ®
33+ 6;(9_771’”)(1 + V)[p(b)]z +[p@P = 165?’ 29(1;*'7:’)) = (0,)? (19)

Geometrically, this equation represents a family of ellipses whose semi-
major and semiminor axes are, respectively,

(V30O — )4 — v/ +v)33 + 6v — Tv?)} oy and oy

PLASTICITY CORRECTION

Due to the presence of high stresses in the vicinity of the tip of a crack;
when a yield criterion is satisfied, some localized plastic deformation occurs
and a plastic zone is created. This phenomenon effectively increases the crack
length and therefore must be accounted for. Following Dugdale (1960) the
size of the plastic zone (see Fig. 17) is determined by the relation

c no

c, COS(Za,) (20
or

P ee(®LY 1

c sec( 5 ay> 1 21)

This relation applies only to a perfect elastic-plastic non-strain-hardening
material. McClintock (1961), however, has suggested that a strain-hardening
material may be approximated by an ideally plastic one if a stress higher
than o, and lower than o, is chosen. Subsequently, Hahn and Rosenfield
(1965) suggested that g, in Eq. (20) be replaced by ¢* = (o, + 7,)/2. Thus,
correcting the Griffith-Irwin equation so as to include yielding and geometry
effects, one hast

+ For a derivation of this equation, applicable to flat plates, see Tetelman and McEvily
(1967). A more realistic approach would be to treat o* and K as floating constants to be
determined such that Eq. (22) presents “a best fit.” One may, however, choose for ¢* the
value suggested by Hahn and Rosenfield or the alternative value suggested by the author:
{o, + (g, + a4)/2]}/2.
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(a) T L
< 2¢c ¢ P
2¢Ce
! | b { ) )
Crack 2V(c)
(b) -czzzz%
Plastic zone _l‘
2c T P

Figure 17 (a) Internal stress distribution used in the Dugdale model of
elastic-plastic deformation near a crack of length 2¢ under plane-
stress tensile loading. (b) Displacements 2V associated with crack
opening. After Hahn and Rosenfield, 1965.

20% 2
Op = % cos‘l[exp (— g;—fg—cﬂ (22)

which upon substituting for o, from Eq. (19) now reads

0 [(33 4 6V — Tv3)(1 + ) onl2 20% K>
g ){ 30 — Tv) [POT + [P )]2} =g 8 1[“"(‘80*%)]

(23)

It should be emphasized that this criterion is not valid after general yield.
At the present time there are no adequate criteria to handle these problems.
Also, in deriving Eq. (23) we have assumed that the plastic zone sizes ahead
of the crack tip for initially curved sheets may be approximated by Eq. (20).
Such an approximation simplifies the general criterion considerablyt and is
valid for o, < 0.950*.

+ For a more accurate but more complex criterion, see the last section.
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COMPARISON BETWEEN THEORY AND EXPERIMENTSE

In judging the adequacy of a theory, one often compares theoretical and ex-
perimental results. Therefore, in the following we compare our results with
some of the experimental data existing in literature.

However, to use Eq. (23) one must know a priori the fracture toughness
K. This difficulty can be eliminated if one proceeds in the following manner:
(1) use the test data and compute the Ks, (2) find the average X, and (3) use
the K,, to predict failure hoop stresses.

R. C. Aungst, Additional crack propagation tests on zircaloy-2 pressure
tubes. Electrotech. Technol. Vol. 4, No. 7-8 (July/ Aug. 1966). This paper
gives results of tests on a 2.7-in.-diameter, 0.26-in.-thick N-reactor tube
with v-shaped cracks.

Material: 309 cold-drawn zircaloy-2
o,: 98.0 ksi, o* = 98.4 ksi
o,: 98.6ksi, K = 240.0 ksi-»/in

The results are plotted in Fig. 18. Notice that the agreement is very good
for large crack lengths. However, for small crack lengths the predicted values
are somewhat lower. This is not contrary to our expectations since our
calculations were based on through-the-thickness cracks.

R. P. Sopher, A. L. Lowe, D. C. Martin, and P. J. Rieppel, Evaluation
of weld joint flaws on initiating points of brittle fracture, Welding J.
(Nov. 1959), p. 4415. The results of tests on 9-ft-diameter, 3-in.-thick
spheres with full thickness cracks are given.

Material: ABS-B Steel
o,: 30.7 ksi, o* = 37.9 ksi
o,; 59.4ksi, K=102.0ksi-i/in

The results are plotted in Fig. (19). The agreement is very good.

R. B. Anderson and T. L. Sullivan, Fracture mechanics of through-
cracked cylindrical pressure vessels. NASA TN D-3252. This paper gives
results of tests on 6-in.-diameter, 0.060-in.-thick cylinders with full thick-
ness cracks.

1. Material: 2014-T6Al
90.5 ksi, o* = 91.9 ksi
939 ksi, K= 51.6ksi-\/in

1 See Quirk (1967) and Folias (1969a).
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Figure 19 Comparison between theory and experiment for ABS-B steel
spherical vessels.

100 T T

8ol k =51.6 ksi/in -

o*=91.9 ksi
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5 k =262.6ksl/In
40} N o¥=79.5 ksi -
20 Kk =317 ksivin AW =
a*=95.2 ksi Banndat S
\e\m
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c(in)

Figure 20 Comparison between theory and experiment for 2014-T6Al
cylindrical vessels at —423°F.
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The results are plotted in Fig. (20). The agreement is good.

2. Material: 2014-T6Al
o,: 82.0ksi, o* = 85.0 ksi
o,: 93.9 ksi, K = 48.6 ksi-,/in

The results are plotted in Fig. (21). The agreement is good.

3. Material: 2014-T6Al
o,: 68.0ksi, o* = 70.8 ksi
o,: 79.0 ksi, K = 43.4 ksi-./in

80

k =48.6 ksi/in
o¥*=85.0 ksi
at-320°F

60 |-

.?.
= 40| -1
3
20 k =43.4ksi/In
o*=70.8 ksi
at room temperature
0 1 1 1 1
(o] 0.2 0.4 0.6 0.8 1.0

c (in)

Figure 21 Comparison between theory and experiment for 2014-T6A1
cylindrical vessels.

The results are plotted in Fig. (21). The agreement is good.
Results of tests on 6-in.-diameter, 0.020-in.-thick cylinders with full
thickness cracks are also given.

4. Material: 5A1-2.5S,-Ti
o,5: 222 ksi, o* = 200 ksi
o,: notspecified, K = 196 ksi-,/in

The results are plotted in Fig. (18). The agreement is fairly good. It should be
pointed out that titanium alloys exhibit significant increase in biaxial yield
strength relative to uniaxial yield strength. Hence the von Mises yield criterion
may or may not be applicable. Be that as it may, if one uses a ¢* slightly less
than 200 ksi, even better agreement is noticed.
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T. E. Taylor and F. M. Burdekin, Unstable fracture by the shear mode in
spherical vessels with long flaws. B.W.R.A. C157/2/66. Results of tests
on 58-in.-diameter, 0.50-in.-thick spheres with through thickness cracks are
given.

Material: B.S. 1501-161: 1958, Grade B
o,: 36.0ksiat80°C, o* =42.2ksi
o,. 60.9 ksi at 80°C, K = 200.0 ksi-,/in

The results are plotted in Fig. (24). The agreement is good except at one
point, but this is due to a temperature change.

40

I 1 1 T 1 T

k =249.0 ksi/in

\ a¥:=43.3 ksi ‘
s at 62-88°C
30} i

k =179.0 ksiy/in

\ Q\ /( 0%240.0 ksi
-

2 20|
:: \
k =147.0 ksiy/in [0} o]
o*=43,3 ksi \ ’
at 1-51°C
10} =
0 1 1 | 1 1 |
(o] 2 4 6 8 10 12 14

¢ (in)

Figure 22 Comparison between theory and experiment for 0.36% C
steel cylindrical vessels.

W. H. Irvine, A. Quirk and E. Bevitt, Fast fracture of pressure vessels:
An appraisal of theoretical and experimental aspects and application to
operational safety. J. Brit. Nucl. Energy Soc. (Jan. 1964). The results of
tests on 5-ft-diameter, 1-in.-thick, cylindrical vessels with through cracks
are given.

Material: 0.369, C Steel
o,: 33ksi, o* = 40 ksi

o, 6lksi, K= 179 ksi-./in
The results are plotted in Fig. (22). The agreement is fairly good.

D. L. Getz, W. S. Pierce, and H. F. Calvert, Correlation of uniaxial notch
tinsile data with pressure vessel fracture characteristics. ASME Paper
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80

k =58.5ksi/in
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at -32I°F

60 |-
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Figure 23 Comparison between theory and experiment for 2014-T6A1
cylindrical vessels.

63-WA-187. This paper shows results of tests on 3-in.-diameter, 0.060-
in.-thick cylindrical vessels with through cracks.

1. Material: 2014-T6 aluminum alloy
o,: 81.9ksi,  o* =84.9ksi
o,: 93.9 ksi, K = 54.0 ksi-,/in

The results are plotted in Fig. (23). The agreement is fairly good. Note that
Folias (1967) does not make it clear as to whether o, = 81.9 ksi is the biaxial
or uniaxial yield stress. If, however, it represents the biaxial yield stress, then
o* = 74 ksi and K = 58.5 ksi-in.? and the agreement is even better (see Fig.
23).

2. Material: 2014-T6 aluminum alloy
o,: 90.8 ksi, o* = 95.2 ksi

ye

o, 108.4 ksi, K = 51.7 ksi-,/in

The results are plotted in Fig. (20). The agreement is not very good. Here
again the same remark as in part 1 holds. Thus if one uses ¢* = 79.5 ksiand
K = 62.6 ksi-in.?, the agreement is better (see Fig. 20).

A. R. Duffy, Studies of hydrostatic test levels and defect behavior. In
Symp. on Line Pipe Res., Pipeline Research Committee of American Gas
Association, Dallas, November 17—18, 1965. The results of tests on 30-in.-
diameter, $-in.-thick pipes with through cracks are given.

v
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Figure 24 Comparison between theory and experiment for B.S. 1501—
161: 1958 Grade B spherical vessels.

Material: X-52 plain carbon (semikilled)
g,: 56 ksi, o* = T3 ksi

o,: 78 Kksi, K = 256 ksi-,/in

The results are plotted in Fig. (25). The agreement is good.

40

k =200 ksi/in.
o*=42ksi

20 \

N

0 1 1

Oh (ksi)

c(in.)

Figure 25 Comparison between theory and experiment for X-52 plain
carbon pipes.
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R. W. Nichols, W. H. Irvine, A. Quirk, and E. Bevitt, A limit approach to
the presentation of pressure vessel failure. Proc. First Intern. Conf. on
Fracture, Sendai, Japan, 1673, 1966.

Material: 0.36 C Steel
o,: 34.5ksi, o* = 43.3 ksi
o,. 09.5ksi K = 249.0 ksi-o/in.

The results are plotted in Fig. (22). The agreement is fairly good. There is
some temperature variation which effects to some extent the fracture tough-
ness K.

ESTIMATING PLASTIC ZONE SIZES

Inasmuch as the Dugdale model (1960) is an approximate model for a pseudo-
elastoplastic analysis, the following simple method for estimating plastic
zone sizes ahead of the crack tip is somewhat justifiable.

PLASTIC ZONE SIZE FOR A PLATE

Consider the tensile stress o as acting on a thin plate containing a crack
of length 2¢,. Then the singular term of the stress ¢{" along the crack pro-
longation at x = ¢, + ris

By iss . (24)

oV =0

Consider next the yield compressive stress as acting on a thin plate containing
a crack of length 2p. Similarly, the singular term of the stress o* at the

same point x = ¢, +ris
6 = —a 4/ e (25)

Superimposing the two solutions and requiring that the stress g, be finite

give
/C + (26)
or
—c_1_(9) '
a=L=1 (07) @7

A comparison between the experimental and the theoretically predicted
values is given in Fig. 26.
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Figure 26 Comparison of plastic zone lengths.

PLASTIC ZONE SIZE FOR A CYLINDRICAL SHELL (AXIAL CRACK)

Proceeding along the same lines, one, in view of Folias, 1965a, has

0,450 55 — 0,4500) ) 5 = (28)

where the geometry correction factor 4() (c) is given by Table 2 and may be
approximated within a 6 % error by

Al e) = &/T + 0.3472 (29)
Solving Eq. (28) for the ratio a, one has

— © 1 (9s\* _1+0.3422(1/a)?
=g ! <?y> [+ 0.3427[(1/a) — 117 (30)

It is interesting to note that Eq. (30) agrees well with the exact results
recently obtained by Erdogan and Ratwani, 1972, after long and difficult
calculations.
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CRACK OPENING DISPLACEMENT

It is clear that as the plastic zones spread from the tip of the crack, the
crack opening displacements 2¥(c) produced at the tip will increase. These
displacements, in the case of a plate, are related to the plastic zone size p by

_ 8o, ( & )
2V (c) -F In - (31)

One may conjecture, therefore, that the crack opening displacement for
a cylindrical shell will be of a similar form except for an appropriate geometry
correction factor, in particular

2(0) = 3% e in () (32)

Again, comparing Eq. (32) with the results of Erdogan and Ratwani, 1972,
one finds a fairly good agreement.

FRACTURE CRITERION

If we adopt, therefore, the criterion that for the initiation of an unstable
fracture near the tip of a slowly moving crack (Tetelman and McEvily, 1967),

2
g‘E — 0,V¥(c) (33)
where V*(c) represents the critical value of ¥(c), one finds that

D e 80.;%6 (e) (&)
K2 = = A)(e,) In . (34)

Subsequently, upon using Eq. (27) and upon solving for the hoop stress, one
derives the following fracture criteriont:

o _ Ale, —¢) B <7zK2>
g,  Ale) L e 8a2c (33)

y

It should be pointed out that in using Eq. (35) one does not know a priori
the effective crack length c,; therefore, a successive approximation scheme
should be used until both Eq. (30) and Eq. (35) are satisfied simultaneously,

+ For a strain hardening material, replace o, by ¢*; for other shell geometries, replace
A by the coefficient P(e).
1 It can be shown that there exists only one ¢, > c that satisfies the two equations.
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Although this criterion will yield more accurate results, it is not of much
practical value because of the lengthy calculations that must be carried out.

CONCLUSION

The close agreement between the theoretically predicted fracture strengths
andthe experimental data suggests that Eq. (23) may be used to predict
failures in pressurized vessels knowing only the structural geometry, the crack
length, the ultimate and yield stresses, and the fracture toughness of the
material.

Finally, for such materials where the fracture hoop stress is close to the
o* value, one should use the more accurate yet more difficult criterion, i.e.,
Eq. (35).

DISCUSSION

In view of Chapter 22, the following question may arise. If classic theory is
so inadequate, then why does it agree so well with experiments ?

First of all, it is true that classic theory is inadequate in predicting the
exact bending stresses in the vicinity of a crack. However, in general, these
bending stresses are very small when compared (in the vicinity of crack) with
the extensional stresses and therefore may be neglected. In fact, in all the
above comparisons between classic theory and experiments this was the case.
On the other hand, for very long cracks such contributions become significant
and therefore can no longer be neglected. Unfortunately in such cases bulging
effects become extremely important and any theory, whether classic or shear,
is inadequate.

As for the difference between the two theories in predicting the extensional
stresses (see Fig. 6 of Chapter 22), there is a question in the author’s mind as
to how meaningful such a comparison is. Specifically, according to Ogibalov
a shell is thin if #/R < 0.01 and therefore any results beyond this range
must be used with extreme caution.

Be that as it may, one may conjecture that qualitatively the same character
of the solution prevails and therefore the fracture criterion [Eq. (23)] treating
o* and K as floating constants to be determined from scaled-down models
may still be used (see the footnote on p. 503).

Acknowledgment:  This work was supported in part by the National Science
Foundation, Grant No. GK-1440, and by Edwards Air Force Base, Contract
No. F04611-67-C-0043.
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O fracture stress

oy hoop stress

o, normal to the crack stress evaluated
just ahead of the crack prolonga-
tion

o, 0\, 7 stretching stress components

ad,.a%, 2% bending stress components

a® applied stretching stress

e applied bending stress

T8 applied in-plane shear

7® applied equivalent shear

L Laplacian operator

\% biharmonic operator
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