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ABSTRACT

Using an integral formulation, the problem of a spherical shell containing a through crack of length 2c¢ and subjected to
periodic transverse vibrations of frequency w is solved for the in-plane and Kirchhoff bending stresses. The usual
inverse square root singular behavior characteristic to crack problems is recovered. Furthermore, it is found that the
transverse vibrations reduce the stresses in the vicinity of the crack tip, except when the forcing frequency w reaches the
natural frequency of the uncracked shell in which case they become infinite.

List of Symbols and Notations

= half crack length
= Eh3/[12(1 —v?*)] = flexural rigidity
= Young’s modulus of elasticity
x, v, 1), F(x,y) = stress functions
©(x, y) = complementary stress function
= shear modulus
thickness
modified Bessel function of the third kind of order n
= kernels as defined in text
constant as defined in text

complementary bending forces
particular bending forces

o ©

INxRTQ
1]

I

(4]
M(XC)7 M(yC)7 M(IC})'
P
M®, MO, M)

It

ngy = constant as defined in text

N, N9 NG = complementary membrane forces
NP, NP, NP = particular membrane forces

N, = Newman function of order n

q(x, v, t), q(x, y) = internal pressure
r {(X -1+ Y}

R = radius of curvature of the shell

R = {X*+Y*}*

t = time variables

U(s—4), U(A—3s) = the unit step function

Vv, = equivalent shear

Wi(x, y, t), W(x, y) = displacement functions

W@ (x, y) = complementary displacement function
X z . . .

X = - y = > z = = = dimensionless rectangular coordinates

X, Y. Z = rectangular cartesian coordinates
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Y = 0.5768 = Euler’s constant
W = frequency of the transverse vibration
{ =x—¢
6 = tan~ ! (Y/X)
a4 _ phe* o Ehc
D R*D
v = Poisson’s ratio
Vo =1-y
p = density of the material
Grps Oyps Oy, = bending stress components
0,,0,,0 = stretching stress components
Xo Yo X¥o
Introduction

In the field of fracture mechanics, considerable theoretical work has been done [ 1 —8] in order
to assess analytically the effect of initial curvature upon the stress distribution in a thin sheet
containing a finite line-crack. In practice, however, these curved sheets are, in addition to the
external loadings, also subjected to longitudinal and/or transverse vibrations. Therefore, an
exploratory study was undertaken to investigate the effect of these forcing frequencies on the
stress distribution around the crack point.

The special case of a flat plate was recently investigated by Folias [9] and Sih and Loeber
[10] independently. The authors, in this paper, will discuss the effect of the steady-state trans-
verse vibrations on a spherical shell.

In the following, we consider bending and stretching of thin shells of revolution, as described
by traditional two-dimensional linear theory, with the additional assumption of shallowness.
In speaking of the formulation of two-dimensional differential equations, we mean the transi-
tion from the exact three-dimensional elasticity problem to that of two-dimensional approxi-
mate formulation, which is appropriate in view of the “thinness” of the shell. In this paper we
limit ourselves to isotropic and homogeneous shallow segments* of elastic spherical shells of
constant thickness. It is furthermore assumed that the shell is subjected to small deformations
and strains so that the stress-strain relations may be established through Hooke’s law.

Formulation of the Problem

Consider a spherical shell which contains a through crack of finite length 2¢ (see Fig. 1) and is
subjected to transverse vibrations. Following Ref. [ 11], the system of equations governing the
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TOP VIEW SIDE VIEW CROSS SECTION
Figure 1. Geometry of the shell.
* A segment will be called shaliow if the ratio of height to base diameter is less than, say, 4.
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Transverse vibrations of a cracked spherical shell 25
deflection function W(x, y, t) and the stress function F(x, y, t), with x and y as dimensionalized
rectangular coordinates of the base plane, can be written in the form
Ehc?
R

Viw+V4F =0 (1)

2 4 A2 4
" ¢t o, phc® 0w qc
Viw + —V°F + D - D )

We shall consider harmonic vibrations. Then writing

q={§(x, y) cos(wt+¢), (3)
and therefore
W = Wx, y) cos (wt+ ) 4)
F =F (x,y) cos(wt+¢), 5
we reduce the system (1) and (2) to
2
_ERe G ver =0 (6)
R
oy _ Pt oo & ap 0
Viw Da)w—l—RDVF—D. (7)

As to the boundary conditions, one must require that the normal moment, equivalent vertical
shear, and normal and tangential in-plane stresses vanish along the crack. However, suppose
that one has already found a particular solution* satisfying Eqs. (6) and (7), but that there is a
residual normal moment M, equivalent vertical shear V,, normal in-plane stress N, and an
in-plane tangential stress N, ,, along the real axis |x| < 1, of the form

D
MP = —Zm, ®)
V» =0, ©)
N® = 10
y — C_2 ’ (10)
N® =0. (11)

For simplicity, we assume my, n, to be constants ¥*
Mathematical Statement of the Complementary Problem

Assuming, therefore, that a particular solution has been found, we need to find now two func-
tions of the dimensionless coordinates (x, y), W{x, y), and F(x, y) such that they satisfy the
homogeneous partial differential equations (6) and (7) and the following boundary conditions.
Aty=0andx|<1:

D [ W s

MO(x,0)= lim — = | iy 2

P 0= tm - 2| S5 VT = Dmye (12
D[ EWO g

V(x, 0)= lim — | "t 2= | =

2 0)= lim — 5| Tt 0 S = 0 (13)

*See reference 11.
** For mg, ny non-constant, see reference 1.

Int. Journ. of Fracture Mech., 7 (1971) 23-37



26 S. H. Do and E. S. Folias
1 2F© ,

(<) = i — L =

NP (x, 0) |&[—I»lo 2 ox2 no/c (14)

1 2F©
N®(x,0)= lim — — ——— = 0. 15

At y=0and |x| > 1 we must satisfy the continuity requirements, i.e.

" o
fim | 2 WO, 04) = Lo ,o_J 16
im | £ (6, 04) = 2 (5, 0-) (16

o o
lim | —— F9>x,0+) — =~ F9(x,0— ] 17
y=0 [‘W’ 0+) oy" . 0-) (17)

forn=0,1,2,3.

Furthermore, because we are limiting ourselves to a large radius of curvature for this
shallow shell, i.e. small deviations from a flat sheet, we can apply certain boundary conditions
at infinity even though we know physically that the stresses and displacements far away from
the crack are finite. Therefore, to avoid infinite stresses and infinite displacements, we must
require that the displacement function W and the stress function F® with their first derivati-
ves to vanish far away from the crack. These restrictions simplify the mathematical complexi-
ties of the problem considerably and correspond to the usual expectations of the St. Venant
principle.

It should be pointed out that the boundary conditions at infinity are not geometrically
feasible. However, if the crack is small compared to the dimensions of the shell, the approxima-
tion is good.

Integral Representations of the Solution

If one seeks the solution in the form

Wex, y)= 5 Pe® cos xsds (18)
0
FO(x,y) = S Qe® cos xsds, (19)
0
then direct substitution into the homogeneous parts of (6) and (7) leads to
* Eh.CZ 2 2 2 2 a
- R (@*—s*)P+(a*—5*)Q e cos sxdx =0 (20)
0
fes) 4 2
1oy Phe zJ C a2 }ay -
So{Ea s%) D © P+RD(a s*)Q ¢ e® cos sxds=0. (21)
Sufficient conditions for the above integrals to vanish are
Ehc?
— (@*>—s*)P+(a*—s*)* Q=0 (22)
4 2
[(az—sz)2 - p};c wZ}P + T;B(az—sz)Q=0. (23)

However, the necessary and sufficient conditions for the algebraic system (22) and (23) to
have a solution are that its determinant vanishes, in particular

Int. Journ. of Fracture Mech., 7 (1971) 23-37



Transverse vibrations of a cracked spherical shell 27

E 2
_ }11{6 (a*—s?) (4> —s?)?
. , =0 (24a)
he c
(a?—s2) — pD 2 E(az__sz)
Ehc*  he* ]
(> —s?)? |:(a2-—32)2 + RZCD - %wi =0. (24b)

The solution of the algebraic equation (24b) leads to the following eight roots
a= +sdoubleroot; a= +(s*+ A%}

phctw? _ Ehc*
D R2D "

where 1% =

Depending now as to the sign of 1*, we will treat the following three cases (i) A* > 0, (i) A* =0,
(iit) A* < O separately.

Case I i*>0

In view of (18) and (19), we construct the following integral representations with the proper
symmetrical behavior in x,

W x, yt) = Sm (Ple” @bl L Pze—(sl—ll)*lle(s_,{)
0

—iP, sin{A? —s*P}|y|U(L—s)+ Pye P!} cos x sds, (25)
2 o
FO(x, y*) z_ig;g {Ple—(51+i2)‘}|yl_pze—(sz—lz)*lylU(S__A)
0

+1iP, sin {(A2—s?)*|y|} U(A—s)+ P,e "I} cos x sds, (26)

where Pi’s (i=1, 2, 3, 4) are arbitrary functions of s to be determined from the boundary condi-
tions, and the =+ signs refer to y >0 and y < 0, respectively.

Assuming that one can differentiate under integral sign, formally substituting Eq. (25) into
Egs. (12) and (13) one has, respectively

lim S {(vos2 +AHP e @I (y s A2 Pe” T APDIT (5— 1)
0

ly|~0
— Py (vos®— A%) sin {(A2 —s*)¥|y|} U (A—s) + P4 (vos*)e 3 cos x sds = —my;
xl<1 (27)
and
lim F r {(vosz—/lz)(sz+12)*Ple_(’2“2)*'y'+(v052+,12)(52—/12)*6_"2_‘2)*”[U(s—l)

[¥|—0 Y
+1P; (vos? + A1) (A2 —s%)¥ cos {(A* —sH)|y|} U(A—ys)
+vosPPye Pllcos xsds=0;  |x|<1, (28)

where again the F signs refer to y >0 and y < 0, respectively. A sufficient condition for Eq. (28)
is to set

vos’py = = {(vos” = A%)(s? + AP Py + (vos” +4%)(s* — A% P, } . (29)
Similarly, substituting Eq. (26) into Eqgs. (14) and (15) one obtains respectively
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. Ehcz @ 2 2 2 .

lim — = g (Pre= @M p e~ =¥ Iy (5 1) 4 iP, sin {(A2 — s2)3 |y}
jy]-0 0

U(A—s)+Pse P} s?cosxsds=n, ; |x|<1 (30)
and

N Eh 2 © 2 2 2 2

lm F e S {Py(s?+ Are 6=l py (22— 22)te = T (s )
[¥|—o0 0

—iP,(A* = s*)* cos {(A* —s?P|y|} U(A—s) + sP,e *P!} s sin xsds = 0;
xl<1. (31)

Here again a sufficient condition for Eq. (31) is to set

P,= —{(SZHZ)& p, - _Slz)i Pz} . (32)

N

Furthermore, it can be shown that the continuity conditions on W< and F® are satisfied if
one considers the following combinations to vanish

©P
g S—21(32+l2)*cosxsds=0; x| >1 (33)
0

*Py 4 2\%

?(s —A*)cosxsds=0; |x[>1. (34)
0

Therefore the problem has been reduced to solving the dual integral equations (27), (30), (33)
and (34) for the unknown functions P (s) and P,(s).

Because we are unable, however, to solve directly dual integral equations of this type, we
will cast the problem to singular integral equations. Let

ul(x)=g P+ a5 < (35)

0

uz(x)=g Py s |x|<1 (36)
0

which by Fourier inversion gives

P(s*+i3)t = 2572 Sl u(€) cos Esds (37)

0

2S2 1
Py(s*— A%t = — S u,(&) cos &sds (38)
0
where the functions u, (£) and u, (¢), due to the symmetry of the problem, are even.
Formally substituting Eqgs. (37) and (38) into (27) and (30), we find after changing the order of
integration and rearranging

Sl_l {u1 Q) Ly —uy() Ly} dE = i;;f—jﬁx ; [x]<1 (39)
Sl_l {u Q) Ly +uy(E)LyydE = —mmpx ; Ix|]<1 (40)

where the kernels L,, L,, L,, L, are given by
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® S3 —(82+ A2yt |y| 5 | ‘} (
L; = lim ———— — s*e *¥ 1 gin {sds 41
" e So{ (s*+ A% )
0 (3= |y]
LZ = lim S {———Z_TU(S—‘A)—‘SZC_S\H} sin zSd.S (42)
Iy{=0 Jo (s*—4%)
. ® S(V052+/{2) (g2 +any} _ .
= lim CA0T CE e AN _(y 52— 2%)e ’M}sm {sds 43
L = m H S (vos?—7%) (@3)
ales} 2_;»2 . . )
L, = lim S {%ﬁ—) e~ U(s—l)—(vosl—l—iz)e‘s""} sin {sds . (44)
[y[=0 JO (S ;\‘ )

The integration in Eqgs. (41)—(44) may be carried out explicitly in terms of modified Bessel
and Newman functions by making use of the Fourier cosine transform table of Appendix I.
Asymptotic expansions of K, and N, also are listed in the appendix.

Without going into any details, the expressions (41)—(44) then become

—/12 XZC 2
1= A 1
L Na Ko(AIL1) — I K (AIL]) — e K (AIL1) + &
—A? 3 A
=5 A“C{ - % - —In '—Q}Jromnm) (41a)
—A? 3 A
L = Ny - 57 2 £Nlum) + 2N +
IS O T 1
_ vo,lz s C vO 3C 2v0 /1_2
A2(4— 5v,—8 4-3
= _——(ZC v°)+ A“{ v‘;z +— Yo < +1In IMI>} + 0(4° In JAL}) (43a)
o vo/lz voAinl VoAT A3 2vy A2
Ly = P No(AlLl) - q N (AL + 7] N (211) + 20 Ny (AL + BT
A4 5 8 4-3 A
= ___(2 o C{ P % 4 g Yo (y+ ‘;‘)} + 0(2° In]ALl). (44a)

The kernels L, L,, L;, L, have singularities of the order 1/{ = 1/(x—¢£). We require that the
solutions u, (x), u,(x) be Holder continuous for some positive Holder indices p, and y, for all x
in the closed interval [ —1, 1]. Thus, in particular u, (x), u,(x) are to be bounded near the ends
of the crack. The problem of obtaining a solution to the coupled integral equations (39) and
(40) can be reduced to the problem of solving two coupled Fredholm integral equations with a
bounded kernel. See Ref. [1b].

Following the same method of solution as that described in Ref. [ 1], one may let

u ()= (=P [A4,+24,(1-)+..] 5 E<1 (45)
wy(§)= (1=} [B+ 2B, (1-EH)+..]5 K<L, (46)
where the coefficients Ay, A,, ... By, B,, ... are functions of A but not of {.
Substituting Egs. (45) and (46) into (39) and (40) and making use of the integrals given in
Part IIT of the appendix, we obtain respectively
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An 5 3\m 3i*[m A2 n
A {———x+i* ———) - (= — ~x3
1{ 3 x+ <32 8) 2% 3 [4 (1—|—11116>x+6x}}

An 5 3y\m 3% [71: A2 T
B - - —/1.4 T - _( - T3
+ 1{ 5 X <32 8)2x+ s |2 1+1n16)x+6x}}

1% 3z Aoy
T4 {‘7 2% T"}
i* 3n At 3} 6 _ mA*Rng
+B, {—77x + S50 ) = — (47)
and
A2n of[Ve—8 \ = . 4—3v0> 7r< ,12> n }
21 of SVo—8 4~ 3v0 4<4—3v0>
b ,12 i
] A*(3n
+A2 {(4—\10)7(7)6——7&3)}
i*(3n 6
+B, {—(4—\10) 5\ x~ nx> }+0(A In )= —mynx . (48)

Next we equate coefficients. In particular, we first require the coefficients of the x* terms to
vanish which gives

A+ B, = }(4,-B,) (49)
4"_3V0
A,+B, = 2—4(4-:'0—)(/114-31).

Then substituting Egs. (49) and (50) into (47) and (48) and solving for A, and B, one has
4 = Rn, {1 A2(8—Tve)  A*(4=3v) A%(4—3v,) nt A2 }

= Ehc? R@—vy)  8(A—vg) | 16(@—v,) 16
+P(Tmiv—o){ 1+—12+%jy+311621n16}+0(121n,1) | (51)

B g {1 g S i )
+m’%5{1+3—72112+3§2y+31i621n22}+0(12]n,1). (52)

We should point out that if coefficients of A, and B, of higher accuracy are desired, say up

to order A%", then it is necessary to solve an n x n algebraic system. In effect, this is a method of

successive approximations for which the question of convergence is investigated in Ref. [1b].
In the view of Egs. (29),(32), (37-39), (45-46), and the relation

Sm(uz—x )’ * cos(as \/n <2u> IF'v+4$)J,(aw) [a>0,u>0Rev>—1%], (53

]
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Transverse vibrations of a cracked spherical shell 3t

which can be found on page 427 in Ref. [12], one has

Py(s) = (SZ%Z—);{AIJ (s)+ 3724, ZS(S) 0(14)} (54)
Py(s) = (SZ—_SAZ)? {BlJl(s) +342B, JZT(S) + 0(14)} (55)
Py(s) = —(A;+By)J(s)— 3,12(A2+B2)J ()+ V%(Al—Bl)Jl(s)w(ﬁ) (56)
Py(s) = — (4, +B,)J(s)— 34%(4,+ B, )JZS(S) + 014, (57)

where the coefficients A4, and B, are given by Eqs. (51) and (52) respectively.
Therefore, a substitution of the above relations into (25) and (26) will determine the bending
deflection W© and membrane stress function F© as follows :™

¢ - § JZ(S) — (52—~ 2t
W (x, y*) = SO{ (_sT_sz);l:AlJl(s)-i_:sizAZT + J e~ (2= |y
5 J2(S) —~ (g2 -2 + I
+(s—2+72)_f[3”1“)+3”2 s T ]e (-4

N

- G| B 3B 6, st ue-9

(A% —s%)
+ [—(A1+BI)JI(S) —34%(A,+B,) JZS(S)
+£—(A1—BI)JI(S)+. J "y'}cosxsds (58)

Ehc? (= s J (s)
e) ) 2 2 —(32+ a2t |y
F (x, y%) 2R So{ (Sz_l_iz)i} [Avf () +34%24, =~ J

- (”S;T_ilzji}[31]1(s)+3'1232 JZT(S) + --.]C_(’l_pmle(S—l)
+ (72_—532? |:B1J1(s)+3)y2B2 JzT(S) + ..}sin{(,lz—sz)ﬂﬂ} U(i—s)

J3(s)

+ [—(Al—Bl)Jl(s) ~34%(4,—B,) + ...]e_"y’}cos xsds. (59)

Without going into any details, the bending and extensional stresses may be computed from
Eqgs. (58) and (59). The results are :

Bending stresses: on the surface Z = (h/2)
0, = Pyl(c/2r)t <— 3-3v osg - —1%2 cos 5—29> cos (wt+@) + 0(r°) (60)
1145 0 — 5
0, =Py(c/2r}* ( -; d cos 5 + 14 ? cos ;) cos (wt+¢) + 0(r°) (61)

*The terms leading to non-singular stresses have been omitted.
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7+v . 8 1—-v . 56
ey, = Pp(c/2r) (— 2 ¥ sin 7" Tv sin 7) cos (wt+¢) + 0(r°) (62)
where
A*Eh(A;—B,) A*Rn, 8—Tvg  4—3v, 4-3v,  A?
P = = — ° o -
P 4(1-v?)c? 2(1—v2)c4(4—v0){ n s 't ® 16}
mo Eh 4
T e e B G TE (63)
Extensional stresses: through the thickness
1
6y, = P.(c/2r)t (3 cosg + = cos 5—0) cos(wt+¢) + 0(r°) (64)
° 4 2 4 2
5 8 1 56
6,, = P.(c/2r)* <— cos = — < cos — | cos(wt+¢) + 0(r°) (65)
° 4 2 4 2
6 1 50
ey, = Pe(c/2r)? G sin 5+ 7008 7) cos (wt+¢) + 0(r%, (66)
where
E o myE { 7 3y 3 /12} .
= S (4, 4B) =0 T2 ) T S .
P gt B) = 3+ e 55137 3 Tis e +0(4* In ) (67)
Case I1 A*=0

One can simply investigate this case from the previous results by letting A— 0. Tt is easily seen
from Eq. (67) that the stress coefficient P, becomes infinite. This, however, is to be expected for

0.2
or f
i | | |
0 | 2 3 4 5
P A

_Ol -
-0.2 T
-0.3

Figure 2. Stress intensity factor vs. 4 for ny=0.
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Transverse vibrations of a cracked spherical shell 33

when A=0 (i.e. o={(E/p)(1/R*)}*) corresponds to the natural frequency of the uncracked
shell [11].

A plot of the stress coefficient P., given by Eq. (67), for n,=0 and various values of 1 is given
m Fig. 2.

Case I1I }*<0

For 1*< 0 the integral representations for W and F* are exactly the same as those of the
non-vibrating cracked spherical shell. The stresses, therefore, from Ref. [ 1] are given by:

Bending stresses: on the surface Z=(h/2)

-3 0 1-
0y, = Pylc/2r)t <_ 3 Y eos 2 — Y cos 5—6> cos (wt+¢)+0(r°) (68)
° 4 %7 4 2
“11+5 1-—
o, = Pylc/2r)* ( v Q +— cos ﬁ) cos (wt+¢) + 0(r°) (69)
Yo 4 2 4 2
C T4 6 1—v 50
= i [ Z_ in 0
Tay = P (c/27) ( g Siny 4 sin 2)cos(wt+<,z$)+0(r )s (70)
where
_ flzﬂth(Al—Bl) _ /{4Rn0 {8_7VO + 4‘—3VO + 4 3V0 miz}
P 4(1-v)er T 2(1—vR)ctd—vo) | 32 8 16 16
mth 71:/12 4_3VO
* 2(1—v2)c2(4—v0){1 L) 4—v0} (71)
Extensional stresses: through the thickness
1 5
oy, = P.(c/2r)* 3 cos 9 + - cos 59 cos (wt+¢) + 0(r°) (72)
° 42 4 2
5 @ 56
oy, = P,(c/2r)* (— coS 5 — 7 €0 7) cos (wt +@) + 0(r°) (73)
I 6 1 56
Tey, = Po(c/2r)* <— = sin ) cos (wt+¢) + 0(r), (74)
4 2 4
where
E(A;+B,) no{ 3n } mOE{ 7 3y 12}
p, =TT Moy 4 4
° 2R h 24 TRagz T8 T 161n16 +0(4 In 2)..(75)

As a practical matter, it is of some value to compare the dynamic with the static stress along
the line of crack prolongation. For ¢=1 in.,, h=0.1 in., R=32.6 in.,, v=1/3, E=16 x 10° psi,
p=0.315 Ibf/in?

(i) for ng#0, my=0:

2

A
[0.67(1 +0.2942) — 1.242* <O.25 +0.131In E)J cos(wt+¢) ; <0

O-_Vd‘EE ° (76)
Yoo [0.67—1.24,12 (0 25+0.13 In 16>}cos(wt+¢); >0 ;

(ii) for ng =0, my # 0:
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34 S.H. Do and E. S. Folias

2
[0.87(1+0.18,12)—|-0.14 <0.43+0.19 m%ﬂ cos(wt4¢);  A*<0
Oyaynamie _ 12 (77)
T ymnctc [0.87+0.14 (0.43+0.19 1n1—6)} cos (wt+¢) ; >0,
where A*=2.1x10"% w?— 1. The plots of the ratio ‘
I = Oﬁxn-miv
O )rnue” COS(0 + @)

for various values of w are given in Figs. 3 and 4.

It is evident from the figures that the general effect of the transverse vibrations on the shell *
is to reduce the stresses in the neighborhood of the crack point. However, when w— [ (E/p)*/R,
which is the natural frequency of the uncracked shell, the stress intensity factor becomes infinite.

[|e]

o8

06

04

oz n

0 1 ] ] | ] Il
¢} 100 200 300 400 500 600 700

w
Figure 3. Ratio of dynamic and static stresses vs. @ for my=0.

of ! -
oaf -

02k N

0 Il | l 1 i

o] 100 200 300 400 500
w

Figure 4. Ratio of dynamic and static stresses vs. @ for ny=0.
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Conclusions

The local stresses near the crack point are found to be proportional to the \/ ¢/r which is
characteristic for crack problems. Furthermore, the angular distribution around the crack tip
is exactly the same as that of a flat sheet, and the stress intensity factors are functions of the shell
geometry and the forcing frequency w. From the solution the following special limiting cases
of practical interest can be examined:

1. f w—0and R # oo, the stresses of a nonvibrating cracked spherical shell are recovered
and coincide with those obtained in Ref. [1].

2. If o # 0 and R — o0, we recover the vibrating cracked plate expressions in Reference [9].

3. If o =0 and R— o0, the stresses of a flat sheet are recovered and coincide with those
obtained previously for bending [ 13] and extension [ 14].

4. If A—0, i.e. when the forcing frequency w reaches the matural frequency (E/p)*(1/R) of
the uncracked shell, the extensional stress intensity factor becomes infinite.

The analysis has shown that transverse vibrations in general reduce the stresses in the vicinity
of the crack tip, except when the forcing frequency reaches the natural frequency of the un-
cracked shell. This fact, therefore, coupled with the inverse square root singular behavior, causes
the structure to fail catastrophically.
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Appendix

I. Tables of F. C. Transforms

T )
S:SC " cos Lsds = |y|21+C2 - (lylzflj}rl;)2 (2)
S (sszsinzgs - M ()
S:O ;sm b ds = /125 No(A) - 132 Ni(0) + 22 1(A0) @)
J. e = =5 Molid) o)
S f:zc—oifs -5 {NO(‘@ NA(;C)} (©)
Sww G _1_/12 = 2K () ()
Smm (s +12 ds = 211K, (A0) (8)
|7 ot = 2 K- 2K, - Bk, 0
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I1 Asmptotic expansions of K, and N ,; for small arguments Z the expansions are:

can = o) (9 56T -

+i §>4 0(Z%In Z 10
2iE\z) toE ) (10)
1 Z\[z (zV 1 ’Z>5 1 ] 1(2)
KI(Z)—2+<”1“5>[5+(§>12—-2+(§ el it
5 (ZV¥ 10 1 /Z)\S ]
‘m(@) _Ffﬁ<5> T0E n2) (1)
z z: 7 ¢ 3z*
nNO(Z)=(1n§+}>[2—7+7 +..}+7—2—6+0(Z61n2) (12)
z 2z 2z sz¢ sZ° ,
7TN1(Z)—(IHE+'Y>|:Z—?+2T§+-.. ~ 773 ?__26_32"_0(2 In Z)
(13)

11— 2\
C.P.V. S_I(T_%)—dé—nx (14)
(1- 52 3
CPV. S de s n@x —x?) (15)
CPVS dé—n(-_,x —x3) (15)
1—52
CPVS dé =n(gx —3x + x°) (16)
— 2
CPVS é)milxz‘:' ¢ %(1+1n%>x+%x3 (17)
C.P.V. S @ﬁn”xz—fldi (%—%mdsz)x +4x +Ex (18)

IV. Some integrals of the bessel functions J  (s)

r Ji(s)e™*"! cos xsds=RcSaO Jl(s)e”('”_”‘)ds=(%)’*cosg + ... (19)
0 0
© - . .. 0
S Jy($)e ! sin xsds = (20) ¥ sin s + . (20)
0
® _ _ 0 50
Iy \ sJi(s)e™*P! cosxsds = 4(2¢)* [cosi —cos |+ - (21)
0
- o ) 6 . 50
Iyl \ sJi(s)e Pl sinxsds = — (2¢)7% sin > — sin 5-| + ... (22)
0
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RESUME

On analyse le probléme de ’enveloppe sphérique ayant une fissure de longeur 2c de part en part de son épasseur, et
sujette & des vibrations transversales de pulsation ; on résoud ce probléme a I'aide de fonctions intégrales, pour les
contraintes coplanaires et les contraintes de flexion de Kirchhoff.

On retrouve le comportement singulier habituel d’ordre 1/2, caractéristique des problémes de fissuration. En outre,
on trouve que des vibrations transversales ont tendance 4 réduire les contraintes au voisinage de I'extrémité des fis-
sures, sous réserve que leur fréquence w atteigne la fréquence naturelle de 'enveloppe non fissurée; dans ces conditions
les contraintes deviennent en effet infinies.

ZUSAMMENFASSUNG
Das Problem einer sphirischen Hiille, mit emem sich iiber die gesamte Dicke der Hulle hinziehenden RiB der Liinge
2¢, welche Querschwingungen mit einer Pulsierung unterworfen ist, wurde fiir die Félle von koplanaren und von Kirch-
hoff-Biegebeanspruchungen mit Hilfe einer Integralformulierung gelost. Hierbel ergab sich wiederum das fir RiB-
probleme charakteristische Gesetz der umgekehrten Quadratwurzel.

AuBerdem zeigte sich, das Querschwingungen die Spannungen in der Umgebung der RiBspitze vermindern, aus-
genommen der Fall, wo die Frequenz w der aufgezwungenen Schwingung mit der Eigenfrequenz der unbeschéddigten
Hiille ibereinstimmt, wo sie dann ins Unendliche ansteigen.
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