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On the Effect  of  Initial  Curvature on Cracked Flat  Sheets  

E. S. F O L I A S  

College of Engineerin#, University of Utah, Salt Lake City, U.S.A. 

(Received January 24, 1969) 

A B S T R A C T  
A survey of existing solutions describing the stress distribution around the crack tip of an initially curved sheet is made 
and a method for esttmating approximate stress intensity factors of other more complicated shell geometries is dis- 
cussed. 
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= stress coefficients as defined in text 

= internal pressure 
= uniform internal pressure 
= radii of  an initially curved sheet 

= displacement  function 
= initial displacement function 
= rectangular  cartesian coordinates  
= or ientat ion angle as defined in Fig. 17 
= 0.5768 . . . .  Euler 's  constant  
= as defined in Fig. 18 

Ehc 4 12(1 -v2)¢ 4 
=-- R2 D = R2 h 2 

- as defined in text 
= Poisson's  ratio 
- 1 - v  
= 3.14 
= h o o p  stress 
= just ahead no rma l  to the crack pro longat ion  stress 
= stretching stress components  
= bending stress components  
= applied stretching stress 
= applied bending stress 
= applied in-plane shear 
= applied equivalent  shear 
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328 E. S. Folias 

Introduction 

One of the problems in fracture mechanics relating to the design of monocoque structures and 
pressure vessels deals with the stresses in the neighborhood of a crack in an initially curved 
sheet. The inherent consequences of initial curvature are the presence of an interaction between 
bending and stretching and the presence of higher stress levels than those found in a similarly 
loaded flat plate. Thus initially curved panels present a reduced resistance to fracture initiation 
that is basically of geometric origin. 

The author, in this paper, reviews some of his previous work on initially curved sheets and 
discusses further extensions of his work to cover other more general shell geometries. 

General Theory 

In the following, we consider bending and stretching of thin shallow* shells, as described by 
traditional two-dimensional linear theory. In speaking of the formulation of two-dimensional 
differential equations, we mean the transition from the exact three-dimensional elasticity 
problem to that of two-dimensional approximate formulation, which is appropriate in view of 
the "thinness" of the shell. We will, furthermore, limit ourselves to elastic, isotropic, homo- 
geneous and constant thickness, shallow segments of shells, subjected to small deformations 
and strains. 

The basic variables in the theory of shallow shells are the displacement comment w(x, y) in 
the direction of an axis z and a stress function F(x, y) which represents the stress resultants 
tangent to the middle surface of the shell. Following Marguerre [2], the coupled differential 

_A_ 
--Y-h 

q (x, y) 
Figure 1. Initially curved sheet. 

equations governing w and F, with x and y as rectangular cartesian coordinates of the base 
plane (see Fig. 1), are given by: 

[ Wo 02w0 02w  2Wo 0 w_] 
V 4 F = E h  2 Oxt3y ?xOy Ox 2 t~y 2 Oy 2 (~x2 J (1) 

t~2F 6~2w0 ~2F ~Wo aZF ~2Wo 
DV 4 w = - q - 2 0 x 0 y  OxOy + ~3x 2 0y2 + Oy2 0x 2 , (2) 

where Wo(X, y) describes the initial shape of the shell in reference to that of a flat plate. 

Formulation of the General Problem 

Let us consider a portion of a thin, shallow shell, of constant thickness h, subjected to an 
internal pressure q(x, y) and containing a crack of length 2c (see Fig. 2). Our problem therefore, 
* According to Ogibalov [1], a shell will be called, shallow if the least radius of curvature is greater by one order 
of magnitude than the linear dimensions, i.e. L/R< 0.1 ; and thin ifh/R<_ 0 01. 
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The effect of  initial curvature on cracked fiat sheets 329 

is to find two functions F(x,  y) and w(x, y) such that they satisfy the governing differential 
equations (1) and (2), and the appropriate boundary conditions. That is, we require that: (i) on 
the faces of the crack, the normal moment, equivalent shear, and normal and tangential 
membrane forces vanish, and (ii) away from the crack, the appropriate loading and support 
conditions are satisfied. 

---•h 
q (x, y) 

Figure 2. Imtially curved sheet containing a finite line crack 

In treating this problem, it is found convenient to seek the solution into two parts, the 
"undisturbed" or "particular" solution which satisfies equations (1) arid (2) and the loading 
and support conditions but leaves residual forces along the crack*, and the "complementary" 
solution which precisely nullifies these residuals and offers no contribution far from the crack. 

It is evident from the applicable differential equations that a theoretical attack of the 
general problem for an arbitrary initial curvature presents formidable mathematical complexi- 
ties. However for the two simple geometries, spherical and cylindrical, exact solutions have 
been obtained in an asymptotic form. On the other hand, for other more complicated shell 
geometries the results can be obtained by a proper superposition of the two previous solutions. 

1. Spherical shell 
For a shallow spherical shell the radius of curvature remains constant in all directions therefore, 

8 2 Wo _ 0 • i72 w__~o = ___6 2 Wo = _1. (3a) 
0X 0y ' 0X 2 0y 2 R 

Substituting (3a) into (1) and (2) one recovers Reissner's equations, i.e. 

Eh V 2 w + V 4  F = 0 (la) 
R 

1 q 
V4w -- R-D V 2 F  -- D "  (2a) 

For a spherical cap containing at the apex a finite crack of length 2c (see Fig. 3) the author 
[3], using an integral formulation, reduced the problem to the solution of two coupled sin- 
gular integral equations. The solution to those was sought in a power series of 2, where 2 was 
given by 

(Ehc4)* 
)~ - - \R2D ] - {12(1-v2)} ~((R/h)}~ R - {12(1-v2)} ~ c (Rh) ~ . (4) 

Furthermore, the author has shown [3b] that for 2 less than a calculated bound the series 
solution does converge to the exact. 

It is clear from equation (4) that 2 is small for large ratios of R/h and small crack lengths. 
As a practical matter, if one considers crack lengths less than one tenth of the periphery, i.e. 

* For more details, se~ [-3], 
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Figure 3. Geometrical configurations of a pressurized spherical cap. 

2c< (2nR/lO), and for (R/h)< 103 a corresponding upper bound for 2 can be obtained, i.e. 
2< 20. Thus the range of 2 becomes 0< 2< 20 and for most practical cases is between 0 and 3, 
depending upon the size of the crack. Consequently, an asymptotic expansion for small 2 is 
justifiable. 

Without getting into the details, the stress distribution around the crack tip for a symmetrical 
loading* is : 

Extensional stresses: through the thickness 

?o) a~') = ~)(c /2r)  ~ cos ~ + ~ cos - -  + 0 (r °) 

a~')=P~,'){c/2r, '~(~cos~-~cos5~O2)+O(r° , 

v(;)y = P(?)(c/2r) ~ ~ sm ~ + sin + 0 (r °) 

(s) 

(6) 

(7) 

Bendin O stresses: on the "tension side" of the shell 

a~b)=t~b)(c/2r)~( 3--3v cos ~ 1--v 50) -- 4 4 c o s ~ -  + O ( r  °) 

[11+5v 0 a~) = ~b)(c/2r)~ ~ cos 

7 + v .  0 
~ = ~b)(c /2~)~ - - U  sm 2 

* For antisymmetric loadings, see reference 3b. 

+ cos  + o ( r  °) 

1 - v  sin 50) + 4 0 ( r ° )  

(s) 

(9) 

(lo) 
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where 

and 

P(~)= - ~ ' )  ( l_v2) , (4_Vo)  ( + 7 + l n  + 

4-VoS(b) { 4-3%o ~z) ~r22~ 1 + 4-v--wa-~. + O(2'hi 2) 

(Âla) 

(lZa) 

It should be emphasized that the stress coefficients contain only up to 0 (2 2) terms hence, 
their use is limited to small values of the parameter 2, in particular 2 <  1. If one, however, wishes 
to know the stress coefficients for large values of 2, it is necessary to consider higher order terms 
in order to guarantee convergence. This matter was investigated further by Erdogan and 
Kibler [4] who, by the aid of a computer, were able to extend the results of reference [3] to 
include values of 2 <  5.5. Thus, for Poisson's ratio of ½, an alternate form of the stress coeffi- 
cients good up to 2 <  5.5 i s  

P ( f ) =  a(e) A]e)--0.54~(b) a] e) (13a) 
p~b) = 1.8 ltY (e) a] b ) -  0.30o ~b) A? ) , (14a) 

where the coefficients A (e) A~ ), a (e) and _(b) ., are functions of 2 and are given in Table 1 or by 
Figures 4-7. 

TABLE 1 

Sphere 

02 1.0112 1.0020 0.00842 0.00611 
0.4 1.0422 1.0070 0.02249 0.01693 
0.6 1.0887 1.0137 0.03749 0.02919 
0.8 1.1479 1.0211 0.05202 0.04186 
1.0 12174 1.0287 0.06557 0.05448 
1.2 1.2956 1.0364 0.07799 0.06685 
1.4 1.3812 1.0439 0.08935 0.07886 
1.6 1.4731 1.0512 0.09964 0.09045 
1.8 1.5706 1.0583 0.10895 0.10155 
2.0 1.6729 1.0652 0.11740 0.11216 
22 1.7795 1.0718 0.12519 0.12223 
2.4 1.8899 1.0783 0.13228 0.13172 
2.6 2.0038 1.0845 0.13876 0.14058 
2.8 2.1208 1.0905 0.14475 0.14879 
3.0 2.2408 1.0964 0.15030 0.15630 
3.25 2.3947 1.1035 0.15668 0.16463 
3.50 2.5526 1.1103 0.16260 0.17172 
3.75 2.7143 1.1170 0.1681 0.17751 
4.00 2.8796 1.1233 0.1732 0.18194 
4.25 3.0485 1.1297 0.1780 0.18483 
4.50 32208 1.1357 0.1826 0.18644 
5.00 3.5750 1.1470 0.1905 0.18493 
5.50 3.9446 1.1580 0.2000 0.17802 

2. Flat plate 

The flat plate represents the degenerative case of a spherical cap where the radius now is 
infinite therefore, 

Int. Journ. of Fracture Mech., 5 (1969) 327-346 



332 E. S. Fol ios  

I 4 . 0  i 

3.0 

2.0 

1.0 
0 2 

Figure 4. Stress coefficient for a sphere [4]. 
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Figure 5. Stress coetIiclent for a sphere [4]. 
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4 6 

02wo _ #2Wo 0 zwo _ 0 .  (3b) 
~x •y c3x z - ~y2 

Substituting (3b) into (1) and (2) one recovers the classical equations for a flat plate, i.e. 

V41 ~ = 0 (lb) 

V 4 w  = - q / D  . (2b) 

The problem of a flat plate containing a finite crack (see Fig. 8) has been investigated by 
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Figure 6. Stress coetficient for a sphere [4]. 
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Figure 7. Stress coefficaent for a sphere [4] 
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Figure 8. Cracked plate subjected to a lateral load q. 
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many authors  for various types of loadings. The  solution, however, can also be obtained from 
that  of  the spherical cap by letting R--. ov or 2-00. Thus  the stresses a round the crack tip are 
given precisely by equations (5)-(10) where the stress coefficients now are:  

P(v ") = 4 `) ( l ib )  
c~(b) 

/~b) = 4 - - % "  (12b) 

3. Cylindrical vessel 
For  a shallow cylindrical shell, one of  the principal radii of curvatures is infinite while the 
other  constant  therefore, 

_ _  c 3z Wo 1 0 2wo_ c ~ 2 w o _ 0 .  - (3c) 
Ox c3y Ox 2 , ~y2 R " 

Substituting (3c) into (1) and (2) one recovers the equations for a shallow cylindrical shell, i.e. 

Eh 02 w 
R c~x 2 + V4F = 0 (lc) 

1 02F q (2c) 
VCw R D  Ox 2 - D" 

TOP VIEW 

~ h 

SIDE ViEW 

Nx 

Nx 

Figure 9. Geometry and coordinates of an axially cracked cylindrical shell under uniform axial extension N, and 
internal pressure q0. 
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Two cases of special interest immediately come to mind : an axial and a peripheral crack. 
Due to the mathematical complexities of this problem, Sechler and Williams [5] suggested an 
approximate method of solution, based upon the behavior of a beam on an elastic foundation 
and hence were able to obtain a reasonable agreement with the experimental results. The author, 
however, using the same method of solution as in reference [3] was able to investigate this 
problem in a more sophisticated manner and the details for an axial and a peripheral crack 
(see Figs. 9 and 10) can be found in references [6] and [7] respectively. 

Subsequently, there have been two more theoretical analyses of this problem, the axial crack 
by Copley [8] and the peripheral crack by Duncan [9]. Their method of solution consists of 
the application of the Fourier Integral theorem leading to the derivation of two coupled sin- 
gular integral equations (different in form than the author's) which in turn are approximated to 
high accuracy by matrix equations and are solved by the use of a computer. Their results were 
derived for zero "applied bending load," i.e. a ~b) = 0, and for Poisson's ratio v = 0.32. 

Again omitting the mathematical details (see references [6] and [7]), the stresses around the 
crack tip are given also by equations (5)-(10) where the stress coefficients now are: 

(i) for an axial crack 

3-~-(4-~o) ( 9-~Vo + I6v--~' 

2< 1 (llc) 

Ill . ,  
TOP VIEW 

~ h 

SIDE VIEW 

J Nx 

Nx 

Figure 10. Geometry and coordinates of a peripherally cracked cylindrical shell under uniform axial extension N~ 
and internal pressure qo- 
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Figure l l .  Stress coefficient for a cylinder [4]. 
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6 8 

22(3 ~ ) 142-37Vo 6-5Vo @ 2)} 

if(b) {1+ 12v°-5vg-8 ~)'a} 
4-Vo (4- Vo)V o 64 + O(24 In 2); 2<1 (12c) 

or the alternate numerical form [4] valid for v =½ and 2< 8 
~ )  = ,v (~) A (~) - 0 54# (b) a ~) (13c) 

, a  v . ~C r  a • c , a  

= 1.81   (14 ) 

Here again the coefficients A (e) A(b) a(e) and ,(b) , ,,~.~ are functions of 2 and are given in Table 2 
or by Figs. 11-14. In Fig. 15 we compare, for ~b) = 0, the results of reference [4] with those of 
Copley's I-8]. The comparison is very good up to 2< 3.3, beyond which Copley's results become 
somewhat higher. 

(ii) for a peripheral crack 

{ ~-7z)~2 ]. ~y(b) 223 ~(1-v2)' ~(1 + V ) ( 4  -- VO) ~ 32V o 16Vo-(I+v) ( ~)} 

~< 2.5 (rid) 
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TABLE 2 

Cylinder 

0.2 1.0096 0.99816 0.006161 
0.4 1.0371 0.99340 0.01695 
0.6 1.0795 0.98660 0.02897 
0.8 1.1344 0.97846 0.04107 
1.0 1.1993 0.96946 0.05283 
1.2 1.2723 0.95986 0.06406 
1.4 1.3519 0.94993 0.07473 
1.6 1.4367 0.93976 0.08482 
1.8 1.5256 0.92956 0.09435 
2.0 1.6177 0.91936 0.1033 
2.2 1.7122 0.90923 0.1118 
2.4 1.8085 0.89926 0.1198 
2.6 1.9060 0.88940 0.1273 
2.8 2.13045 0.87970 0.1344 
3.0 2.1035 0.87023 0,1410 
3.25 2.2276 0.85863 0.1488 
3.50 2.3519 0.84740 0.1551 
3.75 2.4761 0.83643 0.1628 
4.00 2.5999 0.82440 0.1691 
4.25 2.7232 0.81542 0.1750 
4.50 2.8459 0.80539 0.1803 
5.00 3.0895 0.78616 0.1903 
5.50 3.3303 0.76832 0.2005 
6.00 3.5681 0.75079 0.2068 
6.50 3.8029 0.73446 0.2137 
7.00 4.0347 0.71879 0.2200 
7.50 4.2637 0.7080 0 2255 
8.00 4.4895 0.6897 0.2306 

0.00410 
0.01124 
0 01902 
0.02659 
0.03359 
0.03985 
0.04529 
0.04990 
0.05368 
0.05664 
0.05883 
0.06018 
0.06O9O 
0.06083 
0.06014 
0.05832 
0.05549 
0.05172 
0.04700 
0.04154 
0.03512 
0.02012 
0.00234 
0.02222 
0.04130 
0.06622 
0.09350 
0.12279 
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Figure 12. Stress coefficient for a cylinder [-4]. 
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Figure 13. Stress coefficient for a cylinder [4]. 
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Figure 14. Stress coefficient for a cylinder [4]. 
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~ ' ; =  (1-vZ)~(4-Vo)[ 32 + l f f -  v+ln - 4-Vo'  

{1 5+2v+v2 ~ -2} 
- ( 4 - % ) %  + O(241n 2); 2<2.5 .  (12d) 

Here again the stress coefficients are only valid for small values of the parameter 2 and that 
for 2 >2.5 one must consider higher order terms. Fig. 16 gives Duncan's results for v=0.32 
and 6(b)= 0. Notice that for small 2's (2 < 2.5) the stress coefficients given by (11d) and (12d) 
and Duncan's results are identical. 

(iii) for an arbitrary orientation crack* (see Fig. 17) 

Figure 17. Coordinates of an arbitrarily oriented crack in a cylindrical shell 

{ 1 ~]- = ~ + 64 + e(e) 1 + 5 ~ ~ -  sin 2~ 

22(1-v z) ~F42-37Vo 6 - 5 % (  2 cos c~\] 2 +6(b)3~(4-Vo)tL- ~ + ~ ~+ln~--)jcos 

r l + v  l + v  

"3~(4-v0) I. 96% + 1 T V o  tT+ In x 

x . t  3~-vo + l~-Vo 7+ln sin 2c~+ 0(24 in 2) ; 2<1  (lle) 

* Approximate stre~ intensity factors; for derivation see appendix. It should be emphasized here that the angular 
distribution associated with ~') and z ~ )  is not that given by eqns. (5)-(10), but similar. See reference ['3b] for the exact 
solution of the antisymmetric problem in a spherical shell. 
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2z(3~) {~42-37v° 6-5v°  ( 7 ~ ) 1  r/,) = _~e)(1--'~:)~(4--"o) - 96 + ~ g - -  +1~ COS2~ 

[ l + v  l + v [  ,~. s8  ~_)] sin2 o~} 
+ L S f -  + 5 U  ~ + t ' - -  

/?;< +~(e) (1-v2)~(4-Vo) + 

[1+ ,, l+v  (~,+t ,Zs~ ~)]~ } 7 i -  + ~ -  - -  sin2~ 

4 - Vo ( 4 -  %) Vo 64 

~(b) { (5vg_12Vo+8)~(vZ+2v+5)~ 7c)L2 } 
T- ~ 1 + (4 -%)% 64 sin2c~ + 0(241n 2) ;2< l(12e) 

or the alternate numerical form valid only for ~b)=o, V=½, and 2< 8 

e) _ (e) (e) 

tiN.) I tiN~) I 1 )~} (13e) 

~(b) __ if(e) ~(b) (b) ~(e) b) i (b) 

p() 
where i N) - 

- -  ( ~ ( e )  ' 

4. Approximate stress factors for other shell geometries 
If one chooses the coordinate axes x and y such that they are parallel to the principal radii of 
curvature*, then 

(~2 W0 02 w0 1 a 2 Wo 1 
Ox~y - 0 " ~x 2 - R~ ; Oy2 -- R y  ' (30 

with R~ and Ry being the principal radii of curvatures in the x and y directions respectively. 
Substituting (30 into (1) and (2) one finds 

EhF2 l 1 kRy 0x 2 + R~ ~ -  + V - F - - 0  (If) 

1 [ 1 1 a2F 7 q 
v 4 w - ~ L~, ~2F + - (20 3x 2 g~ Oy2j D" 

However, inasmuch as the complementary solution or perturbed solution presents contri- 
butions only in the immediate vicinity of the crack tip, one may consider--at least locally--the 
principal radii of curvatures constant. Thus assuming that the crack is parallel to one of the 
principal axes, say along the x-axis, one may hypothesize that the stress coefficients depend 
primarily on the curvatures that one observes as he travels parallel and perpendicular to the 
crack. Consequently, one may estimate the stress coefficients by a proper superposition of the 
results of an axial and a peripheral crack in a cylindrical shell. In particular, for 0~b)= 0 

P(~) ~ (Y(~) 1 + ~ -  + ~ -  (llf) 

* In a more  general case, when they are not  parallel, equat ions (11) and (20 will contain additional terms of the form 
(02 w/Qx Oy) and (/~ F/Ox Oy) F o r  the angular  distr ibution of this case, see footnote on page 7. 
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3 ~ ~42-37Vo 6-5Vo 2(y ~ )  
>b)~-~e)(l_~=)~(a_vo)i ~ ~ + - - i ~ g  +In 

+ ~ - ; ~  + ~-x~  ~+In + o(xin~); 2< 1 (12 0 

or the alternate numerical form valid for v =~ and 2< 8 

P~)~ ~') { l+(~:~- l )h=a ,+(~;~- l ) l~=ax} (130 

p~b)~ _~(e) { ~ l ~ = ~ , + ~ l a = a = }  • (140 

In order to check the validity of such a superposition we will consider as our Erst example* 
a spherical cap the stress coefficient for which we know exactly. 

Example 1' Sphere. For this shell the curvature is constant in all directions therefore, in view 
of equations (llf) and (12 0, one has 

~ e ) ~  ~e) 1 + ~ -  + - -  = ~(') 1 + 7 ~ - - J '  

which is identical to the exact (see eqn. lla). Similarly 

= - -  0-~(e) 

2<1  

(3~r)22 ~42-37Vo 6-5Vo (7 ~)l+v l+v@ ~)} 
(1-v2)~(4-v0)[ 96 + ~ -  +In + ~ -  + ~ +In 

(1-v2)~(4-Vo) [ 32 + T "Y+in4 ; 2< 1 

which agrees fairly well with (12a). One may conclude, therefore, that such a hypothesis may 
not be unreasonable. 

® , 
-C 

® I 

, ® 

T 
R RI 

R 1 • R - c t a n  e 

R 2 = R + c  t o n e  

F igure  8. Conica l  s ingular  shell 

Example 2" Circular conical shell (see Fig. 18). In this case, one curvature is infinite the other 
fmite, therefore, 
* In the fol lowing examples ,  we have  a s sumed  ~b) = 0. 
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The effect of initial curvature on cracked flat sheets 

(i) for an axial crack: 

{ 5rr 22}; 2 ,<1 P~)~ e(~ 1 + 

{ 57: 22}" 22<1 P~)~ ~(') 1 + ~ , 

(ii) for a peripheral crack 

I~)~(~) 1 + - ~ 2  ; 23<1 

where 
e 2 

~ -= {12(1 - ~)}~ 
(R - c t a n  e) h 

c 2 
22 - {12(1 -v2)} ~ (R+c tan g)h 

c 2 

2 ~ -  { 1 2 0 - ~ ) p  R~h 

Example 3: Toroidal shell (see Fig. 19). For an axial crack in the outer surface 

21,2 *( 1 

2,,3 < 1 

2,, 2 < 1 

21, 3 • 1 . 

Figure 19. Toroidal shell 

~o~'~ i + ~ 2 ~  + ~  , 

for an axial crack in the inner surface 

for a peripheral crack in the outer surface 

{ 57: 7: 2~} ; 

for a peripheral crack in the inner surface 

l 5n 22 7: 22}; Pg)-~a -(e) i - - ~ -  3 + ~  
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Discussion 

In view of the above, one may conjecture that in an initially curved sheet, the 
(i) stresses are proportional to (c/r) ~ 

(ii) stresses have the same angular distribution as that of a flat plate 
(iii) stress intensity factors are functions of the shell geometry and in the limit we recover the 

flat plate 
(iv) stresses include interaction terms for bending and stretching. 

A typical term is of the form " 

+ + + + o (15) 
°P late R~2 ~ (Rlh) ~ R22 " h  Ra2 ' R2 2 

where the expression inside the braces is a positive quantity. One concludes, therefore, that the 
general effect of initial curvature, in reference to that of a flat sheet, is to increase the stresses in 
the neighborhood of the crack joint and reduce its resistance to fracture initiation. 

It is of some practical value to be able to correlate flat sheet behavior with that of initially 
curved specimens. In experimental work on brittle fracture, for example, considerable time 
could be saved since by equation (15) we would expect to predict the response behavior of 
curved sheets from flat sheet tests. 

Particular Solutions 

In order to get a better feeling of the stresses in the vicinity of a crack tip, we examine the 
following two illustrations: 

(1) Clamped spherical shell 
Consider a clamped segment of a shallow spherical shell of base radius go and containing at 
the apex a I'mite radial crack of length 2c (see Fig. 20). The shell is subjected to a uniform internal 

Figure 20. Pressurized spherical cap with fixed ends. 

pressure qo with radial extension Nr= (qo/2)R, and because it is clamped we require that the 
displacement and slope vanish at/~ -- Ro. For this problem the residual "applied bending" and 
"applied stretching" loads at the crack are .'* ~b)= 0 and 6 e = qoR/2h. Returning now to the 
stresses, along the crack prolongation one finds from equations (6), ( l la) and (12a) that the 
normal to the crack stress is (c; 

cr,(x, 0)[~=,r ~ 2rr {1+ (0.47-0.46 In 2)22}(qoR/2h) (16a) 

which for 2 = 1 reduces to: 

a.(x, 0) ~ 1 . 4 8  (qoR/2h). (16b) 

* For details, see reference [-10]. 
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(2) Closed cylindrical tank 
Consider a shallow cylindrical shell containing a crack of length 2e. The shell is subjected to a 
uniform internal pressure q0 with an axial extension Nx= (qoR/2), Mr=0, far away from the 
crack. For this problem, if the crack is parallel to the axis of the cylinder, then a ~b/=0 and 
a~')= (qoR/h). Hence the normal stress along the crack prolongation as found from (6), (llc) 
and (12c) is: 

a.(x, 0)l,=~ ~ {1 + (0.37 -0.30 ha 2)22} (qoR/h) (17a) 

which for 2 = 1 reduces to: 

a,(x, 0) ~ 1 . 3 7  (qoR/h). (17b) 

If the crack is perpendicular to the axis of the cylinder, then ~b)= 0 and ~e)= qoR/2h; therefore 

a.(x, 0)1,=+ = {1+ (0.20-0.15 In 2)22}(qoR/2h) (18a) 

which for 2 = 1 reduces to: 

a,(x, 0) ~ 1 . 2 0  (qoR/2h). (18b) 

In the event that the crack makes an angle ~ with the axis of the cylinder, then 6(b)= 0, 
0 ~)= (qoR/4h)(3 +cos 2~), W)= (qoR/4h)sin 2e. Thus the normal to the crack stress may be 
derived from equations (6), (lle), and (12e). 
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Appendix 

In view of the coordinate transformation (see Fig. 17) 

x'=y sin a + x  cos ~ (19) 

y' =y  cos ~ - x  sin c~. 

Equations (lc) and (2c) may be written in the form: 

Eh t_ [ 02w Ox~ 2(sin ct)(cos ~02w "2 ~c32w-1 (cos c~) 2 - ~) + (sin cQ J + V 4F = 0 (20) 

1 [ "2 0 2 F  6~2F ~2F~ q 
V'w - ~ ~(cos a) 0~ ~ - 2(cos a)(sin e) ~ y y  + (sin a) 2 0y 2 J - D (21) 

where for simplicity in the above we have dropped the prime notation. 
An exact solution of the above equations with the proper boundary conditions is feasible if 

one uses the same method of solution that the author has developed m previous papers. How- 
ever, the algebra becomes extremely tedious and time consuming. By studying the governing 
equations, one notices that by a suitable superposifion of the axial and peripheral crack 
solutions one has the solution of equations (20) and (21), where the cross derivative terms now 
have been neglected. To account for the cross derivative terms,* we assume that the contri- 
bution is equal to the square root of the product of the two O (22) correction factors multiplied 
by the factor + sin 2a and the appropriate "applied" shear. The results are given by equations 
(lle) and (12e). 

* The cross derivative terms correspond to shear. 
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RgSUMI~ 
I1 est proc&t6 ~t une 6rude des solutions extstantes qm permettent de d6crire la distribution des tensions au vmsinage de 
l'extr6mit6 d'une fissure darts une t61e mince pr6sentant une courbure donn6e. 

L'on discute 6galement une m6thode d'estimation approch6e des facteurs d'intensit6 de contralnte dans le cas d'en- 
veloppes ii g6om6trie plus complexe. 

Z U S A M M E N F A S S U N G  
Der Verfasser gibt eine 1Dbersicht der I.x3sungen, welche die Spannungsverteilung in der Umgebung der Spitze eines 
Risses in elnem vorgebogenen Blech beschreiben. Augerdem wird em Verfahren besprochen, nach dem Sparmungs- 
intensit~tsfaktoren im Falle komplizierterer geometrischer Formen n~therungsweise gesch~tzt werden k6nnen. 
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