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INTRODUCTION

A problem in fracture mechanics relating to design of monocoque
structures and pressure vessels deals with the stresses in the neighborhood
of a crack in an initially curved sheet. The presence of curvature generates
deviations from behavior of flat sheets in that imposed bending loads will
induce extensional stresses and similarly, imposed stretching loads will
lead to localized bending stresses. The imposed and induced stresses can
combine so that the local stress level is higher than would be found in a
flat plate similarly loaded. Thus initially curved panels have a reduced
resistance to fracture initiation that is basically of geometric origins.

For the two simple geometries which come to mind, a spherical shell,
and a cylindrical shell, the author has discussed the results in two recent
reports.(l’z) The former is concerned with a line crack in a spherical cap,
while the latter discusses a finite axial crack in a pressurized cylindrical
shell. It is the intent of this report toextend the work of Ref. 2 by con-
sidering the conjugate problem, namely, that of a finite circumferential

crack in a cylindrical shell.

FORMULATION OF THE PROBLEM
Consider a portion of a thin, shallow cylindrical shell of constant
thickness h, subjected to an internal pressure q. This material of the
shell is assumed to be homogeneous and isotropic; perpendicular to the axis
there exists a cut of length 2c. Following Marguerre,(3) the coupled dif-
ferential equations governing the displacement function w and the stress
function F, with x and y as dimensionless rectangular coordinates of the

base plane (see Tigure 1) are given by:
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ABSTRACT

Investigations into the mechanics of tracture initiation with spacial
emphasis on the effects of initial sheet curvature and the interaction of
applied extensional and bending stresses have been pursued further at the
University of Utah.

Using an integral formulation, the coupled Marguerre equations for a
cylindrical shell with a peripheral crack of length 2c¢c are solved for the
in-plane and Kirchoff bending stresses. The inverse square root singularity
of the stresses peculiar to crack problems was recovered in both the
extensional and bending components. Furthermore, the initial curvature
may be related to that found in an initially flat plate by a factor of the
form
1 + f(c/V/Rh)

shell
Gplate 1 + g(c/VRh)

where the functions f(c/vRh) and g(c/vVRh) are such that as the parameter
increases the fraction also increases. This depicts that initially curved
panels have a reduced resistance to fracture initiation that is basically

of geometric origin.
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where R is the radius of the cylinder. As to boundary conditions, one must
require that the nermal moment, equivalent vertical shear, and normal and
tangential in-plane stresses vanish along the crack. However, suppose that
one has alrecady found a particular solution¥satisfying eqns l.and 2; but
that there is a residual normallmoment Mx, equivalent vertical shear Vx,
normal in-plane stress Nx, and in-plane tangential strgsa ny, along the
crack |y| < 1 of the form: |
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where m, and n, @ill be considered constants for simplicity.
MATHEMATICAL STATEMENT OF THE PROBLEM

Assuming, therefore, that a particular solution has been found, we need
to find two functions of the dimensionless coordinates (x,y), W(x,y) and

F(x,y), such that they satisfy the homogeneous partial differential equations
1 and 2 and the following boundary conditions.

At x = 0 and |y|< 1 :

_ 5 5 Dm
Mx(o,}'):""D“ 8w+vaw - o ) (7)
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* As an {llustration of how the local solution may be combined in a ﬁarticular
case see ref. 4.
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At x = 0 and ly]> 1 we must satisfy the continuity requirements, namely
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for n = 0,1,2,3. Furthermore, we shall limit ourselves to iarge radii of
curvature, {.e., small deviations from flat sﬁeets; we thus require that
the displacement function W and the stress function F together with their .
first derivaties be finite far away from the crack. in this manner, we

avoid infinite stresses and infinite displacements in the region far away

from the crack. These restrictions at infinity simplify the mathematical

complexities of the problem considerably. Furthermore, the first corres-

ponds to the usual expectations of St. Venant's principle.

METHOD OF SOLUTION

We construct the following integral representations which have the

proper symmetrical behavior with respect to y, with A% = Ehc"/R2D:
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where the Pi (i = 1,2,3,4) are arbitrary functions of s to be determined from
the boundary conditions. The % signs refer to x>0 and x<0, respectively, and

!’. B = (—1)!’.

a =1
Imposition of the boundary condition requirements eqns 7-10, using eqns 8

* :
and 10 to determine P, and P, give for x = 0 and lyl< 1

= 1im f
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*P3 and P4 are given implicitly in terms of Pl’ P2 in the appendix, where we have

used a shear free condition along the y-axis.
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whereas continuity conditions on the functions and their derivatives for

x = 0 and lyl > 1 may be satisfied if
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Therefore, we have reduced our problem to solving the dual integral equations

© 13-16 for the unknown functions (Pl-Pz)(s) and (P1+P2)(s) These may be trans-

formed to the following set of coupled singular integral equations
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where uy and u, are unknown‘functions defined by

L)

* See ref. 5.
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and the kcrnellei (1= 1,2,3,4) are complicated modified Bessel functions
(see appendix).

Following the 'same method of solution as in ref. 5, the singular integral
equations may be solved for small values of the parameter A. We do not show
the details of this solution, but a list of the requisite steps can be found

in the appendix. Finally, the displacement and stress Ffunctions are:
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THE SINGULAR STRESSES
The bending and extensional stress components are defined in terms of

the displacement function W and stress function F as:
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where z 1s the dimensionless distance through the thickness h of the .shell,
measured from the middle surface with positive direction inwards. The stresses

may be expressed in an integral form from which, when evaluated, give for

i6 .
€e =y t ix, € << 1



Bending Stresses:

P 1_\
o WD (,1.1-;;3:1.\1 8130 0, 52) 4 ge%)

P .
o = —-—:( S_I?vcoa-e‘-l-l———!co -:39-)4-0(0)
Yy Wr 27y 2

P
T = “11_: ( lz-\"* sin 2 + lf*\i sin é—q) 4 0(60)
L o 27 4 2

2

3n0A (1+v)

P

{i + 2(y+n %9 - (

b 16 (3+v)V12(1-v2) he2n” 6%,

On the surface z = - h/2c(upper fibers)

(32)

(33)

(34)

- - 2
17-22v-1112 n(x/4)2}

6m D 2 2
) A 134+2v+v =25+22v+11v2

+ —J1 - + (e +

(3+v)c2hA* {j 64 32(3+v) (1-v) 8(3+v)\)O
+ 0(A62n)) (35a)

which for small X\ reduces to:
3n A2 (1+v) - 6m D 2 2
P - o {i + 2(ytin %0} o[ B¥2viv2 A

16(3+v) vY12(1-v¥) hc? (3+v) c2n (1-v) (3+v) 64

+ 0(A\"*2n))
(y = 0.577 Euler's constant)

Similarly we find through the thickness

Extensional Stresses:
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which similarly for small A reduces to:
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As a practical matter, consider a shell subjected to a uniform internal
q R
pressure q_ with an axial extension Nx = —%— " My = 0 far away from the

crack (see Fig. 2). The stress normal to the crack, along the line of crack

prolongation, for v = 0.32 and in the upper fibers is

R
K qo
o ~— (—z—h—> (40)
. . Y2¢e
circumferential
crack

where the stress intensity factor K is given by

1+ 0.81(A/4)2 - 2.46(y+in —%)(A/4)2 + 2.80(A/4)% + 1.78(y+n %) (A/4)H

K=
1+ 1.26(A/4)2 - 2.06(A/4)"* - 0.80(y+in %)2 /&)Y + 0.98(y+on %)(x/a)“
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which for small values of the parameter ) reduces to

K =1+ 0.200% -~ 0.15)2 #n A (41Db)
A plot of the stress intensity factor for both equations (4la) and (41b)
is given in figure 3. It should be emphasized at this point that the
solution of the coupled singular integral equations was obtained in a

series form, which for small values of the parameter A depending on the
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number of terms used) one may show that it converges to the exact
solution. However, by looking at figure 3 one will be somewhat sur-
prised that eq. (4la), which is correct up to 0(A*), deviates con-
siderably for large X from eq. (41b), which is correct up to 0(\?4),
and might thus conclude that an asymptotic solution with higher order
terms will not necessarily increase the radius of convergence. The
author believes that when the 0()A®) term is included in the solution,
its character corrects itself and resembles that of eq. (41b). This
can be seen from the expansion of the kernels by noticing that the
terms 0(0222) and 0(afA®) have the same sign, however by definition of
is ~a?, i.e. there exists a sign reversal which could alter the charac-

ter of eq. (4la). Nevertheless, this is only a conjecture and as a

result the matter is under further investigation.
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CONCLUSIONS

As in the case of a spherical shell,
(i) the stresses near the crack tip are proportional to 1//e
and have the same angular distribution as that of a flat plate
(i1) an interaction occurs between bending and stretching
(iii) the stress intensity factors are function of R; in the limit
as R > « we recover the intensity factors for bending(G) and

(7

extension in a flat plate. Thus we may write

“shell 1+ f (c/V/Rh)
0plate 1 + g(c/VRh)

(42)

where the functions f and g are such that the fraction is positive and
monotonically increasing.

From this and the corresponding result for a spherical cap, it would
appear that the general effect of initial curvature is to increase the
stress in the neighborhood of the crack point. It is also of some practical
value to be able to correlate flat sheet behavior with that of initially
curved specimens. In experimental work on brittle fracture for example,
considerable effort might be saved since, by eqn 42, we would expect within
elastic theory, to predict the behavior of curved sheets from flat sheet tests.

In conclusion it must be emphasized that the classical bending theory
has been used in deducing the foregoing results. Hence, only the Kirchhoff
shear condition as ‘satisfied along the crack, and not the vanishing of both
individual shearing stresses. While outside the local region the stress
distribution should be accurate, one might expect the same type of discrep-

ancy to exist near the crack joint as that found by Knowles and Wang(s) in

] Fs



comparing Kirchhoff and Reissner bending results for the flat plate case.
In this casce the order ol the stress singulavity remained unchaneod but

the circumferential distribution around the crack changed so as to bhe pre-
ciselyv the same as that due to solely extensional loading. Pending further
investigation of this effect for initially curved plates, one is tempted to
conjecture that the bending amplitude and angular distribution would be the

same as that of stretching.
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APPENDIX

The following is a list of the successive stéps in the analysis.,

ar _®1- Pz) 52 + &7
PP, = ~(1+v) > + v : (P1+P2)

? ez B /s2+é—?z

P,-P, = Yo (B, *P,) + (P

where vo = 1-v

,- .s2 4222 IXIJ S exp {"32 +%& lxl;} ' o (uﬂ,él)
: 1

sin gs ds=—,2~x 2

% A - 242 2,2 2,2

5v
__o 4,3 A |
G (MO L3+ (/4" 3 (yien °‘—}51> = V(BA/4)* £3(yten —-LELB*4 )

+ 0(A8z5en Az

s exp{-/sz + lx J
L, = 1in
2 (1+v)y—
[x|+ o /Bz + B:Az

-~

2

sin Zs ds .= (_1~'F\)) —B% Kl(—Bl—Lg—L)

252
z-li"- + (1+v) '——;- (Y+J?,n —LE-L) - (1+v) —B#

= (L) 2 (BA/)Y £3 4+ (L+v) (BA/4)% £® (ytn @—J}-ﬂ) + 0(A6250n A|z])

=15~



242
exp (”'é; + 9___,‘__ X s ex - 2 BZAZ =
o Jv g P + A IX
le_,o ° = + (24v) v sin s ds
2 CXZAZ 2 BZAZ
@ 8% + = /s? + g
- sin s ds
T
8 s2 + 4A

8 52 o m—e—

-..azxzj el o]+ 5 bl }
*2
|

cEp lxl]

v g_ZLKl(__lj_Lakz )-i- (+v) v E2 l(BA:[!EL) } s

: o 5 s2
exp['-' o %Z»E xl] 1 v, (3+v) 2)2,
- - sin £s ds © —2—— 4 (1+v) v_2 .
2 82)\2 J 14 } o 1l6
8 v¥s< +
4

=-~1im
|| o
o

2,2 2,2 arlz] 2
+v 828 Lo alel ), (2+v) B2 [Lipn B2 + I8
o 8 4 o 8 . A 4

59, (3+\)) '

(ar/®)" €3 + v (oA/8)" 3 (y+2n —Jf-L)

I

+ 2to)o  (yen BELY aasayn 03 - AL 3
o 4 4,9

b

A (y+!2,n J-QJ-) + 0(A6z5 2n Alz|)

L - 82A2
=) 2/e? “2*2 exP[" ? + 5 lxl] 82,2 eXp[- C le]
. .
2
‘ ' ’ s Vs2 + BZAZ

24,2 -

= s exp[-/sz + £2 lxl} |
- (1-v2-2v) 1im [
(o]

I I e T T T T I Si'n CS dS ==
] hd 2,2
/.2 B<A
| s_ +;—?:—‘

=G

sin s ds



= —O'C—— + (14v)? 9% = (L+v)? g_gi (y+2n BXJ’CI) - “; 4

- (1-v2-2v) (BA/4)Y T3 (y+on EA%QL) + (1-v? —2v) (BA/4)“ 3
3
£ (an/ay® %;-+-% (ar/&)" £3 (y+in 2A£51) + %-(ax/4)“ 23 (y+in ﬁlﬁél)

+ 0(A8z5 2n A|z]).

where ¢ = yv - §

s 2n
u(8) = V1-2 ] A A (1-£2)"
n=0
¥ 2n n
u(6) = V1-€2 ] B A" (1-62)
n=0
J1 (9)
P1+P2 = l le o0
+
2Bl J (s)
P.-P B — -—»—---+ e e

12 oA 8

where A, and B, are given by 25, 24, and

1 1 _
s
(LA 4 ClHoiE, = 4 —= (1-v)A. + (1+V)B. b + (1+v) 2= {A -B }
3 3 4" 20 1 FV) By 160 2By
I
-(1-v)(3+v)nx“(A3-BB) - {(1 v) (3+)—55 (ar/4)" +'ZT%%736'}

+ By [-(l—Zv—vz) (ar/4)" o5 + %g (ar/8)" 55 }

24 14
4 ——%%ﬂﬁ {(1—\))A2 + (1+\))B2}

1.7~



2. {(l—\))Az + (1+\))32} - LT (1) {A }

= {(l+v) a)? AT, (1-v) -'(aA/4)” (y + —) +-—(ax/4)” (zn ?;-- v ln-ﬁi)}

+ B {—(l+\)) e 7 @AY (v + )+ T (L) (a1 /4)" & }

vo(3+v) mAZ {AZ BZ} + g%%i m(1+v) {(1-—\))A2 + (1+v)B }

= 4 {_ (1-v) (1+v) °‘ T+ (1-0) (3+v) (ar/h)4 I > (v +

3)

(3L o 8) + (1) (@A/4)% I on —— (20 (1) (@ /8" T 1 %*—

+ B {’- (1+v) 2 “2227’ - @A/8)" (12203 (v + £+ (ar/4)" %(l‘s’l 3 %)

— (1ev2_ p o BA L8 b BA b o, QA
(1-v4-2v) (ar/4) 5 n 8 +-3 (ar/4) 2 4n =~ 3 (ar/4)* on = 8

.



FIGURE CAPTIONS

Figure 1. Geometry and coordinates.

Figure 2. Cracked shell under uniform axial extension NX and
internal pressure g

Figure 3. Stress intensity factor vs. x .
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