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THE STRESSES IN A CRACKED SPHERICAL SHELL

By Erraymios S. Forias

1. Introduction. One of the problems in fracture mechanics which apparently
has not received extensive theoretical treatment is that concerning the effect of
initial curvature upon the stress distribution in a thin sheet containing a crack.
Considerable work has been carried out on initially flat sheets subjected to
either extensional or bending stresses, and for small deformations the superposi-
tion of these separate effects [1] is permissible. On the other hand, if a thin sheet is
initially curved, a bending load will generally produce both bending and ex-
tensional stresses, and similarly a stretching load will also induce both bending
and extensional stresses. The subject of eventual concern therefore is that of the
simultaneous stress fields produced in an initially curved sheet containing a crack.

In the following, we consider bending and stretching of thin shells of revolu-
tion, as described by traditional two-dimensional linear theory, with the addi-
tional assumption of shallowness. In speaking of the formulation of two-dimen-
sional differential equations, we mean the transition from the exact
three-dimensional elasticity problem to that of two-dimensional approximate
formulation, which is appropriate in view of the “thinness” of the shell. In this
paper we limit ourselves to isotropic and homogeneous shallow segments™ of
elastic spherical shells of constant thickness. It is furthermore assumed that the
shell is subjected to small deformations and strain so that the stress-strain rela-
tions may be established through Hooke’s law.

2. Formulation of the Problem. Consider a portion of a thin, shallow spherical
shell of constant thickness h and subjected to an internal pressure ¢(X, ¥) (see
fig. 1). The material of the shell is assumed to be homogeneous and isotropic
and at the apex there exists a radial cut of length 2¢ with respect to the apex.
It is convenient at this point to introduce dimensionless coordinates, namely

X Y
C

r ==, Y (2.1)

Following Reissner [2], the coupled differential equations governing the deflection
function W(z, y) and the stress function F(zx, y), with z and y as dimensional-
ized rectangular coordinates of the base plane, are given by:

__Eh¢’
R
As to boundary conditions, one must require that the normal moment, equivalent

vertical shear, and normal and tangential in-plane stresses vanish along the
crack. However, suppose that one has already found a particular solution satis-

2
VW +VF =0 VW+ Zg_D V'F =0 (22,3)

* A segment will be called shallow if the ratio of height to base diameter is less than,
say, 1/8.
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fying (2.2) and (2.3), but that there is a residual normal moment M v, equivalent
vertical shear V, , normal in-plane stress N, , and in-plane tangential stress N
along the real axis | x| < 1, of the form:

MP = —g m, V7 =0 N"=-D NP_0 (247

2 )

Yy

2y 0 W ®
For simplicity, we take my , ny to be constants.

* For mq , ng non-constants, see the remarks in sect. 8.
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3. Mathematical Statement of the Problem. Assuming therefore that a particu-
lar solution has been found, we need to find now two functions of the dimension-
less coordinates (z, y), W(x, y) and F(z, y), such that they satisfy the partial
differential equations (2.2) and (2.3) and the following boundary conditions.
Aty = 0and |z| < 1:

D[owW #W] Dmyg
M, (x = | = 20| = el
J(2,0) 5 l:ay2 + v e = (3.1)
D[o'Ww W’
V,(: = —— - =
+(2,0) 63[61/3 + (2 - axzayJ 0 (32)
1 (')ZF Mo = 1 32F
j\ru': = e — = — T ‘ = —— —— = i
N,(z, 0) e 2 N y(.’L, 0) & xdy 0 (3.3, 4)
h
; fqo ]
l/k \ \ T T \ T 7 7 /' A\ 1
Ro t
Fig. 2
Aty = Oand | x| > 1 we must satisfy the continuity requirements, i.e.
i [fi—(IV+>- 9 (VV_)} = (35)
Iy]-’O ayn ayn
. 9" 9" _
lim | — (F") — — (F ]:0 3.6
tim [ 20 - Z a7 (36)

for n = 0, 1, 2, 3. Furthermore, because we are limiting ourselves to a large
radius of eurvature for this shallow shell, i.e., small deviations from a flat sheet,
we can apply certain boundary conditions at infinity even though we know
physically that the stresses and displacements far away from the crack are finite.
Therefore, to avoid infinite stresses and infinite displacements we must require
that. the displacement function W and the stress function F with their first
derivatives to be finite far away from the crack. These restrictions simplify the
mathematical complexities of the problem considerably, and correspond to the
usual expectations of the St. Venant Principle. It should be pointed out that the
boundary conditions at infinity are not geometrically feasible. However if the
crack is small compared to the dimensions of the shell, the approximation is good.

4. Reduction of the System. Reissner [3] has shown that the solution to the
system (2.2), (2.3) can be written in the form

W=x+® F=—RDVx +¥ (4.1,2)
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where ® and ¢ are harmonic functions and x satisfies the same differential equa-
tion as the deflection of a plate on an elastic foundation, i.e.,

(V" +\x =0 (4.3)

where

N = Ehe' _ 12(1 — %) <c>4
R2D —  (R/h): \h

The function y represents the inextensional bending part of the solution, and &
represents the membrane part of the solution.

8. Integral Representations of the Solution. We next construct the following
representations which have the proper symmetrical behavior with respect to x,

Wz, y*) = / {Prexp [—v/s2 — x|y ]
s | (5.1)
+ Prexp [—/s2 + in?|y|l + Pse'"'} cos ws ds
+ _WN'RD * T
Fa,y) =555 [ (Prew V@ =yl 52)

— Pyexp [—/s2 + N |y|] + Pse"'} cos as ds

where the P; are arbitrary functions of s to be determined from the boundary
conditions, and the = signs refer to ¥ > 0 and y < 0 respectively.

Imposition of the boundary condition requirements Eq. (3.1- -3.4), using
Eq. (3.2) and Eq. (3.4) to determine P; and P, respectlvely, glve fory = 0
and [z | < 1 ‘

_%Qfo 1\/32 — )P,

c (5.3)
— (1 — s/ F in2)Py] s cos as ds = me
/0 {os® — A\® — s7'/52 — in(ws® + aAD)]P: (5_45

+ s’ + 0\ — s/ F ind(vo — N)]Pa} cos s ds = —m

whereas continuity conditions on the functions and their derivatives for y = 0
and |z | > 1 will be satisfied if o

/” (Pl\/sz — N cos s
0 \Py/s* + int) &

Therefore we have reduced our problem to solving the dual integral equations
(5.3)=(5.6) for the unknown functions P;(s) and P,(s) where

ws' Py = —{vs — (s’ + APy 4+ Vst + in(ms' — )Py (5.7)
Py = —(PWV/F = — Pr/F T o0 , | (5.8)

ds = 0; lz|>]| (55,6)
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6. Reduction to Single Integral Equations. Because we are unable to solve dual
integral equations of the type discussed in the previous section, therefore we
will reduce the problem to singular integral equations. Let

U © (P1\/8* — i\? ;
< N = f ' 908 5T s (6.1,2)
Us 0 Porn/s2 4+ o2 &

which by Fourier inversion gives:

Pn/m 232 A
= 22 cos £s d§ (6.3,4)
P/sEr i) T oh \w

where the functions u1(£) and us(£), due to the symmetry of the problem, are
even. Formally substituting (6.3) and (6.4) into (5.3), (5.4) we find after
changing the order of integration and rearranging

o 2 1
Ny = 22D [ @)Lt - w()LE) de (6.5)
e —1
2D (! * .
M, = —— L {u(§) Ly + u2(E) L3 | d (6.6)

where

w 4 _ ‘——_ 2
LE El s* expl—V/s* _ﬁZ)‘ Lyl cos (x — &)s ds

2 Jo A /82 — a2\?

L (6.7)
=25 1 e 1 cos (x — £)s ds
N s expl—v/s — 2|yl _
LI = §f0 o g cos (z — &)s ds )
_ % A s cos (z — £)s ds
% 1. © [&(vs" — ') o e
— s(ns’ + i)\z)e_"”'} cos (x — £)s ds
Lo S (ns + ) | —_
LI=2 {—————- 3 = 2 — B2

— s(ns’ — i)\2)e_s“"$ cos (x — £)s ds
)

The integrations in (6.7)—(6.10) may be carried out explicitly by making use
of the Fourier cosine transforms

f ¢V cos ¢s ds = l—y2—| (6.11)
0 p

f“’eXP[—\/s_Z—JF?IyH

cos ¢s ds = Ko(ap); Rea >0 (6.12
Veta st} | )
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and similar results obtamed by dlffelentlatmg them with respect to = and y.
In these formulas p* = ¢* + |y °, and K, denotes the modified Bessel function
of the third kind of order n.

The expressions (6.7)—(6.10) then become respectively

2,2
oL¥ = i{—kff (& = 31y PYKo(NSp)

dx
| Ne'e | ange 2 2¢ 8|yl e
_[—3—+ 3 ({2—3|y|):|1(1()\ﬁp)+—4——-———6—}
p P p P
(9 2 92
a1t = LN (¢~ 3y Kot
Bolth g % syl (6.19)
—[ =+ (- SIyI)]Kl()\ap)—F : }
p P p
oL¥ = a%{ WNBE (2 gy )Ko(MR) =

2 3
: [5,?5— + 2 gy I”)] K0 — K0 (615)

+

200 ¢ 8¢y |2vo o\
ra - b - o2

x _ 8 [ wid' -
2L = —{———— (£ — 3|y "Ko(hap) — n
ox P

v 3 3.3 2\ 3
[Rer 2 e gy ] Kuar) — 22 Ko  (810)

2w¢ 8¢ |y ' W;}

Thus, the limits as | y | — 0 of N, and M, are found to be respectively

o 2 1
lim N, = _ 2N }EDi {ur(§) Ly — ua(§) Lo} dt
MEL! mwe d —1
(6.17)
. 2D d [}
lim M, = —=— — | {w(§)Ls + us(&) Ly} di
ly|=>0 T dx Jo

where the integrals are understood to be of Cauchy principal value and

_ N _ ¢ 2)\8

oL, = 2F K01 £ ) ( mJrshlﬂ)zclwnww (6.18)

s ol _)\2a2 N Ay ¢ 2\ O 2 :

2, = X Kalha | 1) — (Ve = |+§M)K<x th+% 1)
— VO}\,BZ __V(sa_g' 26

2= =20 1 51) = 0 (V8 |Shl+m|)K1<wm>

{ y  ae (620)
—az)\ﬁmKl()\ﬁH’l) +?3' e



170 BEFTHYMIOS 8. FOLIAS

2 2 ¢
o=~ gt ]) — (x%ﬁ—f + —’“i) KO | £ ])
¢ lel el
: pe g (©2D
— 0 — Kilx el e
606‘?[ 1(al§|)+§3 ;

If we set N, , M, , in the limit as | y | — 0, equal to —no and —my respectively,
integrate with respect to x, then we find that they must satisfy the integral
equations

f_ {92 — w()2La} dE = —Spse lel <1 (622)
f_l (ur(£)2Ls + wa(£)2La) dE = —wmow; || <1 (623)

The kernels Ly, L», Ls, Ly have singularities of the order 1/t = 1/(z — §£),
as can easily be seen by observing their behavior for small arguments:

- N6 wgr [5 3y 3 lx—gl]
2Ly = _Q(—x———_é + N6 (2 £) 3378 gln‘)\ﬁ——“?—‘ (624)
_ + 0\ (@ — &' InN|w—E])
N ‘4 [5 3y _ 3 lw—zl]
2L, = ‘“m + Na (x - E) 3—2 - 3 — g‘ln )\OLT (6.25):
+ 00 (z —&)*Inn|z —E])
.‘ _ )\2012(4 == 1/[)) 4.4 51/0 = 8 4: == 3V
2L3————2-(?_——£>—+)\5<95—£)[ 39 = 3
. (6.26)
: (v +In A8 ‘—T—‘z‘i')] 400z — ' Inx |z — £])
. X252(4 — ) 44 [51/0 — 8, 4 — 3n
2L4—“—m+)\a(z—f) 39 ¢ - g
(6.27)

: ('y +1n>lﬁ2;‘5—1>] + 00z — &’ Inx|z — &)
We require that the solutions wi(x), us(2) be Holder continuous for some
positive Holder indices u and pe for all z in the closed interval [—1, 1]. Thus in
particular ui(z), us(x) are to be bounded near the ends of the crack.
The problem of obtaining a solution to the coupled integral equations (6.22)
and (6.23) can be reduced to the problem of solving two coupled Fredholm
integral equations with a bounded kernel. See Reference 4. ’

7. Approximate Integral Equations. Because of the complicated nature of the
kernels Ly, Lz, Ls and Ly, an exact solution for the unknown functions u ()
and wus(z) is extremely difficult. On the other hand, for most practical applica-
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tions the parameter A attains small values as follows from the definition of A
namely

\/ 12(1 — d = 7
Rk

It is clear that X is small for large ratios of R/h and small crack lengths. As a
practical matter, if we consider crack Iengths less than one tenth of the periphery,
Le. 2¢ < 2xR/10, and for R/h < 10" a corresponding upper bound for \ can be
obtained, namely X < 20.* Thus the range of \ becomes 0 < N < 20 and for
most practical cases is between 0 and 2, depending upon the size of the crack.

If we consider small \, we may replace the exact singular integral equations
with the following approximate set

(¢/h) = V1201 — ) (¢/R)(R/h)}

i
[ ()2 — w20 g = Z’;‘;;g z; 2| <1 (71)
1
[ wa©)2s + wn(£)2ls dg = —moma 2] <1 (72)
where the new kernels are:
__\¢ N 3y 3 wlx—sl]
2l1=m+)\ﬁ( E)l: ] 8111—-—2——— (73)
B o 5 3y 3 xalx—si]
212:_2(12———.5)_*_)\0[(@—5)[3_2—_—8——5111—_—2_ (74)
_ o’\'(4 ) 4t [51«; -8 4 — 3y
th=——p-p TME-D|THt+—
(75)
(v +w Mzt |>]
o 62)\(4 +>\“( _E)[5u0—8+4—3y0
f 2(x ) 32 8
(76)

8. Solutions to Approximate Integral Equations for Small . For the simple
case A = 0 the problem reduces to that of a flat sheet under applied bending and
stretching loads, the solution of which has been investigated by many authors.
For example, the problem for both bending and stretching for an orthotropic
plate, containing a finite crack, was investigated by Ang and Williams [1] and a
solution was obtained by means of dual integral equations. It can easily be
shownt that the dual integral equations can be transformed to two singular

* Dr. B. Reissner has suggested that the physical situation corr espondmg to >\ > 1 mlght
be susceptible to treatment as a boundary layer problem .
t See Noble [5].
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integral equations of the type (6.22) and (6.23) with simpler kernels. Further-
more, these are not coupled and the solutions can easily be obtained as in §47
of [6]. Without going into the details they are found to be of the form A4/1 — &,
where A is a constant.

Similarly, the solution for an initially curved sheet must, in the limit, check
the above result and because ui(£) and us(£) are in particular to be bounded
near the ends of the crack, it is reasonable to assume solutions of the form

wo(®) = VI =Bl + N1 —£) + -] el <1 (8D
un(§) = V1= 8B+ NB(1 — &) + -1, [l <1 (82)
where the coefficients Ay, Az, -+, Bi, Ba, - - - can be functions of A but not of &.

Substituting (8.1) and (8.2) into (7.1) and (7.2) and making use of the
relation
o

i — )\alx—El o ™ 3

we equate coefficients and obtain

4= sl R L (R )
+ Ao <% n %—’) n %x%ﬁ (1 +n 3‘_1-2%2>} + 00 In )

Mgt — 3u0< >\232>} mo { a8 — 3w
+ﬁ4—vo 1+1n—1€ +}\2,32(4—-V0) 1+E4-—uo LB

2 7 3y 3 y2.2 N6 2
+ A3 <§+—8_> +1—6>\6 (1 +ln—1—6—>} + O\ In )
We should point out that, if coefficients Ay, B; of higher accuracy are desired,
say up to order A" then it is necessary to solve an n X n algebraic system. In
effect, this is a method of successive approximations for which the question of
convergence is investigated in Reference 4.

It thus appears that for X < X" the power series solutions of the form

Cu(E) = VI = B o AnaN (1 — £, (8.5)
WV (E) = V1 = B om0 Baad™(1 — £)" (8.6)

in the limit as N — o, will converge to the exact solutions ui(£) and us(£) of
* the integral equations (7.1) and (7.2). However since most particular solutions
will give us a non-uniform residual moment and normal membrane stress along
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the crack, it is only natural to ask how the solution changes. Suppose, for | z | < 1,
we expand m, and ng in the form »_, a.2™" (even powers because of the sym-
metry of the problem), then our previous method of solution will still be ap-
plicable. And as can easily be seen from equations (6.22) and (6.23), although
the coefficients 4, , B, in this case may change, the character of the solution
will still remain the same. Finally, because we desire to focus our attention upon
the singular stresses around the neighborhood of the crack point, we need only
to compute coefficients 4, and B, .

9. Determination of W and F. In view of equations (6.4), (6.5), (8.1), (8.2)
and the relation

200

/ s *J.(as) cos xs ds
0

_ l\/;r (2a) [0 + DI a® — 9:2)"—%; 0<z<a Rewpw>-1 (9.1)
10; a<xw< o, Rep>-—1%
which can be found on page 44 of [7] we have:
R Ja(s)
P1(s) = \/32—_‘1—)\2 {AIJI(S) + 3>\2A2 —2‘;_— + 0(>\4)} (9-2)
and similarly
_ 5 2 Jz(S) a

where A, and B, are given by (8.3) and (8.4) respectively. And finally sub-
stituting (9.2) and (9.3) into (5.7) and (5.8) we find
_ 2 Ja(s)
P3(s) = — (A1 + Bi)Ji(s) — 3\* (4, + B») ——
(94)

2
. % (4 — B)Ju(s) + 00N

and
Py(s) = — (A1 — Bi)Ju(s) — 3N (As — Ba)s ' Ju(s) + O(N)  (9.5)

Therefore a substitution of the above relations into (5.1) and (5.2) will deter-
mine the bending deflection W and membrane stress function F. It is clear that
the integrals in equations (5.1) and (5.2) converge and the differentiations under
the integral signs are also justified at least for y ¥ 0. The values of the deriva-
tives at y = 0,z < 0 can be obtained by a proper limiting process.

10. Determination of the Singular Stresses. In view of equations (5.1), (5.2),
(9.2), (9.3), the bending and extensional stresses defined by

EZ o'w azw]
T T = A [a_:i? e i
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EZ a"w Ow
= 2 Nty 2
Oyy (1 - V2>C2 [ay}_ + v 01:2] (10. )
2G7Z dw
fzypy ™ _’—C.Z“ a.’C(')y (103)
1 oF 1 &F 1 F
O, = h_c’2 5?: Ty, — W SI—Z , Tay, — ﬁ m (104—6)

can be computed. Without going into the details we list below the results.
Bending Stresses:* On the surface Z = +3h
B Eh Po(3 6 1 50 0
= Ty )8 \/E( 008 5 + 7 008 5) + O(e) (10.7)
Eh Py (11 + v
2(1 — ) Ve 4

G ; 1—31—‘1<71_Vsin%+1 -Vsin%g)-i—o(éo) (10.9)

Oyp =

0 1 —
coai—i——r cos ——>+0( ) (10.8)

Towp = _(1 — v)ct Ve 4
where
= Ay — B no N 8 — v , 4 — 3v
P = 2}\2 1 1 = 0 { 0+ 0
PV LD (4 —w) | 32 g
4 — 3w A \L
+ 16 (1 + In 1—6)} (10.10)
Mo 71')\ 4 — 3110}
_— -I- e O\ In\
+\/2(4_V0){ T 4+ O\ In))
Similarly
Extensional stresses:
_ Pn (3 0 1 050 0
O <4 cos 3 -+ 7 008 ) + O(e) (10.11)
Psy 5 0 1
oy, = " \/€< €08 5 — 7 €0 0s —) + 0(" (10.12)
_ P (1.0 150 0
Taye — hc4 \/e< 5 Z Ssin §> —l" 0(6 ) (10.13)
where
Py = Z\—Ij/]—): (A1 + By)
noc 2\, moN NVERD ¢ 37 2} (10.14)
= 2«1 —I— oS }+ { + — + —l
V2 { V2 (4 —w) 16
4+ 0\ 1In\)

* Note because of the Kirchhoff boundary conditions, the bending shear stress does
not vanish in the free edge. For the flat sheet this problem was discussed by Knowles
and Wang [8].
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It is apparent from the above equations that there exists an interaction between
bending and stretching, except that in the limit as A — 0 the stresses of a flat
sheet are recovered and coincide with those obtained previously for bending
(9] and extension [10]. Thus the stresses in a shell are expressed in terms of the
stresses in a flat sheet.

11. Combined Stresses. In general, the combined stresses will depend upon the
contributions of the particular solutions reflecting the magnitude and distribu-
tion of the applied normal pressure. On the other hand the singular part of the
solution, that is the terms producing infinite elastic stresses at the crack tip, will
depend only upon the local stresses existing along the locus of the crack before
1t is cut, which of course are precisely the stresses which must be removed or
cancelled by the particular solutions described above in order to obtain the
stress free edges as required physically. Hence the distribution of q(x, v) does
not—to the first order—affect the local character of the stresses at the crack
point.

It is believed of more than passing interest to observe that for practical pur-
poses, the final representation of the stress field in a spherically curved shallow
shell can be viewed as the flat plate distribution modified by a correction factor,
essentially of the form 1 + O()). To the extent that elastic analysis can antici-
pate fracture in the presence of ductility produced by the mathematically in-
finite stresses near the crack tip, one would conjecture that the critical applied
stress at fracture might also be expressible in essentially the same form, i.e. re-
duced by a factor 1 — O(N). It may also be noted that if such a correlation
could be established, a considerable amount of difficult curved panel testing
could be eliminated, or replaced by the simpler flat plate geometry.

By way of illustration of how this solution can be applied in a specific situa-
tion, the special case of a segment of a sphere subjected to uniform loading has
been investigated by the author and published elsewhere [11].
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