A .FINITE LINE CRACK IN A PRESSURIZED SPHERICAL SHELL
Efthymios S.Folias*

ABSTRACT

The deformation of a thin sheet having initial spherical curvature is shown to be associated
with that of an initially flat plate resting upon an elastic foundation. Using an integral
formulation the coupled Reissner equations for a shell with a crack of length 2c are solved
for the in-plane and Kirchhoff bending stresses, and, among other things, it is found that
the explicit patire of the stresses near the crack point depends upon the inverse half power
of the non-dimensional distance from the point €. The character of the combined extension~
bending stress field near the crack tip is investigated in detail for ‘he special case of a
radial crack in a spherical cap which is subjected to a uniform internal pressure ¢, and is
clamped at the boundary R ‘= R,. Pending a complete study of the solution, approximate
results for the combined surface stresses near the crack tip normal and along the line of
crack prolongation are respectively of the form

4R
o'y(t-:,O)l a1y 0+45 /e =+ ...

A=0.98
c=0.23 in
Ry=4.25in
and similarly 4R
Gx(s’o)lv=1/3= 0.45v1/¢ —§—+
A=0.98
c=0.23 in
Ro=4.25 in

It is interesting to note that the stress 6, and oy, along the line of crack prolongation, for this
geometry are equal, In general, they will be of tlie same sign and will differ only slightly
in magnitude due to the bending component. Finally, the experimental and theoretical re-
sults for sy. along the line of crack prolongation, compare very well.

INTRODUCTION

In the field of fracture mechanics, considerable work has been
carried out on initially flat sheets subjected to either extensional
or bending stresses, and for small deformations the superposition
of these separate effects [1] is permissible. On the other hand,
if a thin sheet possesses initial curvature, a bending load will
generally produce both bending and extensional stresses, “and
vice versa. The subject of eventual concern therefore is that
of the simultaneous stress fields produced in an initially curved
sheet containing a crack.

It is of some practical value to be able to correlate flat sheet
behavior with that of initially curved specimens. In experimental
work, for example, considerable time could be saved if a reliable
prediction of curved sheet response behavior could be made from
flat sheet tests. For this reason an exploratory study was under-
taken to assess analytically the manner in whichthe two problems
might be related. Although it is recognized that elastic analysis
is not completely satisfactory due to plastic flow near the crack
tip, considerable information can be obtained.

Two initially curved geometries immediately come to mind:
a spherical shell and a cylindrical shell. In the latter case one

* Formerly Research Fellow, California Institute of Technology, Dr. Folias is currently in
Thessaloniki, Greece. Mailing address c/o the editorial office, Pasadena, California.
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of the principal radii of curvature is infinite and the other constant.
It might appear therefore that this geometric simplicity leads to
a rather straightforward analytical solution. However, the fact
that the curvature varies between zero and a constant as one
considers different angular positions -- say around the point of
a crack which is aligned parallel to the cylinder axis -- more
than obviates the initial geometric simplification and therefore
increases the mathematical complexities considerably. For this
reason, Sechler and Williams [2] suggested an approximate
equation, based upon the behavior of a beam on an elastic
foundation, and were able to obtain a reasonable agreement
with the experimental results. Since then, the present author
has investigated this problem in a more sophisticated manner
and has obtained a solution which will be reported separately.
In this paper, a spherical section of a large radius of curvature
constant in all directions is chosen for consideration.

CRACKED SPHERICAL SHELL
Formulation of the Problem

Consider a segment of a thin, shallow* spherical shell of
constant thickness h and subjected to aninternal pressure q(X, Y).
The material of the shell is assumed to be homogeneous and
isotropic and at the apex there exists a radial cut of length 2c
oriented symmetrically with respect to the apex. Following
Reissner [3], the coupled .differential equations governing the
bending deflection W(X,Y) and the membrane stress function
F(X,Y), with X,Y as rectangular coordinates of the base plane
(see Fig. 1), are given by:

- —%V2W(X,Y) + VAR (X,Y) = 0 (1)
VW (X, Y) + ;—D VP (X,Y) = 9(%5[) (2)

It is convenient at this point to introduce dimensionless coor-
dinates, namely

X

X Y
ol y=4 (3)

which change the homogeneous parts of (1) and (2) to:

2
_-E%- VW + VAR = 0 (4)
VW + €= 2R = 0 (5)
RD

As to boundary conditions, one must now require that the normal
moment, equivalent vertical shear, and normal and tangential
inplane stresses vanish along the crack. However, suppose that

*A segment will be called shallow if the ratio of heighi to base diameter is less than, say,
1/8.
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Fig.1l. Geometry and Coordinates.

one has already found* a particular solution satisfying 4 and
5, but producing a residual normal moment My, equivalent
vertical shear Vy, normal in-plane stress Ny, and an in-plane

* See the next section for an example.
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tangential stress N, , along the real axis |x) <1, of the form:
Xy g

My(P) = —%m(x) (6)
c
VY(P) = - %.v(x) (7)
c
w () o 20 ®)
c2
(P) . #x)
Nay o2 (9)

Thus we need to find two functions of the dimensionless coor-
dinates (x,y), W(x,y) and F(x,y), such that they satisfy the
partial differential equations 4 and 5 and the following boundary
conditions. At y = 0 and |x| <1

2 2
My 0) = - REW L BW LDy g
c?  ay? ox? c?

: 3 3
Vy(x’,0)=_£[aw+(2_1/) 3W1=12V_(X) (11)
c? 8y3 ox 2dy c?

2
N,(x,0) = L 2T -n() (12)
c? ax2 2
_ 1 82F _ t(x)
ny (X, 0) = - 22— 5;8—3_’- "(:g" (13)

Aty = 0 and ix!> 1, we must satisfy the continuity requirements,
namely:

5" a"
lim | ~(W*) - —(W)] = 0 (14)
ly|—0 & v

an n
lim  [——(F") - —(F7)] = 0 (15)
|y]—0 ay ay

(n =0,1,2,3).

Furthermore, because we are limiting our selves to a large
radius of curvature for this shallow shell, i.e.,, small deviations
from a flat sheet, we can apply certain boundary conditions at
infinity even though we know physically that the stresses and
displacements far away from the crack are finite. Therefore,
to avoid infinite stresses and infinite displacements we must
require that the displacement function W and the stress function
F with their first derivatives to be finite far away from the
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crack. These restrictions simplify the mathematical complexities
of the problem considerably, and correspond to the usual ex-
pectations of the St. Venant Principle. It should be pointed out
that the boundary conditions at infinity are not geometrically
feasible. However if the crack is small compared to the di-
mensions of the shell, the approximation is good.

Method of Solution

Reissner [4] has shown that the solution of the system 4,
5 can be written in the form

W=1yx+6¢ (16)
F o= -BDg2, 4y (17)
02

where ® and ¢ are harmonic functions and y satisfies the same
differential equation as the deflection of a plate on an elastic
foundation, i.e.

vty =0 (18)
where

4 _ Ehc?* _ 12(1-v%)

AT = =
2 R.2
R°D (%)

° (19)

The function ¥ represents the inextensional bending part of the
solution, and ¢ represents the membrane part of the solution.
We next construct the integral representations

- -Vs2-in2y) -Vsindyy -s|y)

W(x,y*) = [ {P,e + Py e +Pye  Jeosxsds  (20)
IRD o VST VSRR -y
F(x,y%) = 5 fO{Ple -P,e +P,e }cosxsds (21)
c
where the P; (i = 1,2, 3,4) are arbitrary functions of s to be

determined from the boundary conditions, and the t signs refer
to y >0 and y < 0 respectively, In reference [5], it is shown
that the problem is reduced to the solution of two coupled singular
integral equations which, because of the complicated nature of
the kernels, are solved for small values of the parameter A,
This is certainly permissible since for mostpractical applications
the parameter A attains small values as follows from the definition
of A, namely

Do

4
A= Vi(i-v?) (§) - (%—)

It is clear that A is small for large ratios of R/h and small
crack lengths., As a practical matter, if we consider crack

(22)
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lengths less than one tenth of the periphery, i.e. 2¢ < 2—1;%1, and
for R/h < 103a corresponding upper bound for A can be obtained,
namely A < 20, Thus the range of A becomes 0 <A< 20 and for
most practical cases is between 0 and 2.

Finally, without going into the details we obtain the displace-
ment function W and the stress function F (see appendix) for
m=m,, v=0, n=n, and t = 0.% Thus the stressesare found
to be:

Bending stresses:** On the surface Z = + %
Eh iilO 3 8,1 56
Oy, = = ————— —=(7 cos 5 t7cos )+ 0(c) (23)
b 2(1+v)c? Ve

Eh 10 ,11+5v 6 1-v 56
o, = — ( s+5+——cos5) +0(e% (24)
Ib 2(1-v%)c? e 4 2 4 2
Gh 1‘.510 74y g  1-v 56,
o= - (——sin g + T sin 57) + O(€°) (25)
b (1-v)ez e
where
_ A,-B, n, A® 8-7v,  4-3v,
P, = a®? = - gt —5— 7+
22 V2EhD(4-v,)
4‘3”0 mo 7’-)_ 4—31}0

7L2
—g— (L+m g+ {1+ 35 WHO(A‘* £nX) (26)

V2 (4-v,)

Similarly

Extensional stresses:

~

P
20 3 6,1 56
g, = ——— (Fcosz+FecosF)+0O(e (27)
¥e ot e 4 2 4 2
P .
20 5 6 1 560
c = — = — (5 cos 5 -5 CoS5) + O(e° (28)
Ve T hot ve (B2 71 3) + 0(€)

20 1 .. 6 1 . 56
e =-_—_(_S]_n___sln_+o€o 29
xy, ot e & "2 ) (€°) (29)

* Reference [5] also discusses the method of solution for the case that m and n are functions
of x. The case of v # 0 and t # 0 is discussed in reference [6].

* Note because of the Kirchhoff boundary conditions, the bending shear stress does not vanish
in the free edge. For the flat sheet this problem was discussed by Knewles and Wang [7].
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where

A*RD

= (A + By)
S e
2 2 2
n_c m A“vEhD ¢ 2
) 37 .2 0 13,3 3
= \/_{1+327x}+ = {§‘+‘81+1€“116} (30)
2 (4-v,)

+ O(Axtan)).

It is apparent from the above expressions that there exists an
interaction between bending and stretching, except that in the
limit as A—0 the stresses of a flat sheet are recovered and
coincide with those obtained previously for bending [8] and
extension [9]. Thus the local stresses in a shell are expressed
in terms of the local stresses in a flat sheet,

Combined stresses:

In general, the combined stresses will depend upon the con-
tributions of the particular solutions reflecting the magnitude
and distribution of the applied normal pressure. On the other
hand, the singular part of the solution, that is the terms pro-
ducing (mathematically) infinite elastic stresses at the crack
tip, will depend only upon the local stresses existing along the
locus of the crack before it is cut, which of course are precisely
the stresses which must be removed or cancelled by the particular
solutions described above in order to obtain the stress free
edges as required physically., Hence the distribution g(x,y) does
not -- to the first order -- affect the local character of the
stresses at the crack point.

A PARTICULAR SOLUTION

As an illustration of how the local solution may be combined
in a particular case, consider a clamped segment of a shallow
spherical shell of base radius R, and containing at the apex a
finite radial crack of length 2c¢ in the direction of the X-axis
(see fig. 2). The shell is subjected to uniform internal pressure

+

h

—
'/>\\T \\ T 7 7 /'A\

Fig.2. Clamped spherical cap: A particular case.
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q, Wwith radial extensional stress N, = % q,R, and because it

is clamped we require that the displacement and slope vanish
at R = R,. For this problem, Reissner [10] gives the solution
of the coupled-extention-bending equations for the uncracked
shell as:

W, (r) = C, ber (Ar) + C_ bei (Ar) + C, (31)
Fp(r) = ——---E-}LZ————{C1 bei (xr) - C, ber (Ar)} - % q,Rr? (32)
J12(1-12)
where
i C2g,RV12(1-v%) r, bei' (Ar,)
Cy= 2 1 2 2
Eh®A [bei'(Ar )] + [bert(Ar,)]
ber! (Ary)
Co=-Cy {bei' (Xro)}
ber(Ar )bei'(Ar_ )-bei{Ar )ber'(Ar )
C3 - —Cl{ o 0 o o]

bei'(Ar,)
Along any radial ray, and in particular along 6 = 0, =, the

bending and extensional shear vanish by symmetry, and the
circumferential bending and stretching stresses are

2 .
Mé(’[g (r) = %—{Cl[vbeimr) - (1-v) ber'rgxrzl

-C,[vber(Ar) + (1-v) i)gix'%lr_)]} (33)

(P) _ Eh2().2/02) .1 " . 1
Ngg (r) = -—_\/_1—3_(—1—__?—)_{C1 bei” (Ar) - C, ber" (Ar)} -3q,R (34)
N 5(r) =0 ' (35)
V. g(r) =0 (36)

Therefore, the homogeneous solution must negate these values
from the particular solution. But since we already have obtained
a solution for uniform loading along the crack, namely m, and
n,, therefore we will make use of these resultg in order to ob-
tain an estimate of the stresses in the vicinity of the crack.
As an engineering approximation, by considering an upper and
lower bound on m, and n,, we may estimate an upper and lower
bound for the stresses in the neighborhood of the crack point,
On the other hand, if we are interested in the stresses away
from the crack, say three times the crack length, then by Saint
Venant's principle we need to take only the average values.
Thus we define
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1
Dm o( ) . (P} Dm rue
- = min M § ————— £ max
66
c? [%1<1,8=0 c? 1xi<1, =0
and similarly
)
T : (P) ntrue
= min Ngg < £ max
c? xi<1, 8=0 c? ixl<1, 8=0

® 0
Mg, =D
(W
N® - o
[:1: P
C

()

Next, let us consider a spherical shell with the following

geometrical dimensions:

R, = 4.25

R = 20 in.

h = 0,009 in.

v = 1/3

2c = 0.46 in.

E = 16 x 10% psi

from which we can calculate the parameters

A = 0.98
r = 18.50

o]

The following table shows the variation of

P P
M(GG) and membrane force Née) along the
X (P)
X X = A= N

c 66
0 0 -0.50 qoR
0.074 0.30 -0.50 qgR
0.117 0.50 -0.50 qR
0.164 0.170 -0.50 q R
0.235 1.00 -0.50 q.R
diff. 0%

It is clear from the table above that Mépg)

the residual

crack.

(P)
Mag

0.89 x 107* qrh
0.87 x 107% q_rh
0.92 x 107% q Rh
0.94 x 1074 q_Rh
0.97 x 1074 q_Rh

diff. 9%

moment

and N(QPG) are almost

uniform along the crack. Therefore we may choose

n (W
o2 = 0.50 q, R
Dm (u) :
¢}
= 20,97 x 10™* g Rh
c? °

Returning now to the stresses along the line of crack prolongation,

for example the normal stress oy
and 28 that: total

(X,0), one finds using 24
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Oy

crytotal (X, O)IV=1/3 - '\/-é(_X:T/C.{

A2 9
1+(0.16 +0.03 fn 7%

(37)
R A2
+ ——————{1 - (0.38 +0.23 tn TPA%}
V2(X-1)/c
which for A = 0,98 reduces to:
i o) )
oy (X,0yx ————{1.07} + ———{1.27 (38
Vrotat VZ(X-1)/c V2(X-1) /c
where
m
Ty = 8D 2 = "applied bending"
h? 2
— O, _n . s "
= —— = applied stretching
®  ¢2n

And for our particular example, we can associate

q,R q
= -8 0 _ _ 9
5™~ -0.58 x 107 — 0.001 — (39)
q R
5 = 0.50 - (40)
e

From equation 38 we see that the initial curvature will increase
the applied bending stress in this case by approximately 7% and
the applied stretching stress by 27%. One deduces therefore that
the critical crack length of a shell decreases with an increase
of A or a decrease of radius of curvature. In this particular
case it is found that the direct bending stresses are negligible
compared to the extensional ones and the combined stress is

oy (X0 __0.64 DR 061y LR
Y total v=1/3 2(X-1) h 2(X-1) h \
C

(41)

o (42)

X, 0 E ———
X total ( )|V=1/3 2(X-1) h

where, based on the Kirchhoff theory, the two-dimensional
"hydrostatic tension' nature of the o, and o, stresses predicted
for flat plates is preserved. Finally, the corresponding strains
are
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R
€ (X,0) = 0.30,/=>= 2o (43)
yr X-1 Eh
C qu
%(X,0) = 0.30 /%7 —m (44)

GRIFFITH'S THEORY OF FRACTURE FOR CURVED SHEETS

As is well known in fracture mechanics, the prediction of
failure in the presence of sharp discontinuities is a very com-
plicated problem. Some work has been done on flat sheets,
based on the brittle fracture theory of A. A. Griffith [11].
His hypothesis is that the tfotal energy of a cracked system
subjected to loading remains constant as the crack extends an
infinitesimal distance., It should of course be recognized that
this is a necessary condition for failure but not sufficient.

Griffith applied his criterion to an infinite, isotropic plate
containing a flat, sharp-ended crack of length 2¢. We shall now
proceed to obtain a similar, but approximate, criterion for
initially curved sheets based upon only the singular terms of
the stresses.

The basic concept for crack instability is

oU

system

oc

where the system energy is defined by

Usystem = Uloading + Ustrain + Usurface (46)
The applied stresses are held constant so that
Ujoading = Uo = B fp(craun + Tgqu,) dP (47)

where U, is a reference constant energy, and the integration is
over that portion of the outer perimeter where forcesact to cause
displacements. The strain energy is

Ustrain = % f (Ggeg + Ten Yen + OTI €n) d vol. (48)
vol

= ¥(28 + Ph + 4ch) (49)

surface

It may be shown that the surface area S of the shell faces and
the outer perimeter P of the shell are independent of the crack
length.

Therefore 46 may be written as

Usystem = Ulo + 4v'he - h J;, (Giuﬁ + unT‘STI)dP

1
+ 3 JVOI (0565 + TET) 'yEn + on en) d vol.
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or
UsYstern = Uy + dy'c -
Z, A T
-lim 5 %f f f {T3L (0,+0)2 Ho _~0,)?H2T_,)*}R*dR¥dOdZ
Z g -~

Nlb"

st * = h* e
where U:) =U0 + v* (2A + Ph), Z,=2,- s Zy —Zo+~2_—-andA"*

a radius to be determined (see fig. 3). In the above we have
defined

4 2 =2 =2
%—:R 1_(______'h/2 R° | '?{/2 1 __I'_l_]
R R2 R?

Fig.3. Geometric details for fracture criterion.

Integration of 50 with respect to 0 gives:

Zg A
#* . c ®
U = U(') + 4v"ch -~ lim gaf j IldR dzZ \ (51)

system
Y e-»0 €

1
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where
1-v
1, = T [(K oK)  HK K )P 1H(K -K ) P HK 1K) %) (52)
with
P
EZ T+ o~ 1 Poo
K,-K, = B - o 2 |
P (53)
2P P
EZ 10 2 20
K, +K, = —= + = = (54)
0 -
c2 (1-v) ~h
KKy, =0 (55)
P, P,
EZ 10 1 20
K,-K; = - —_— —_— (56)
1 (1+) 202 2h o4

And since we are restricting ourselves to the singular stresses,
it is only fair to derive a Griffith criterion applicable in the
immediate neighborhood of the crack tip, where because locally
the shell is almost flat, we can replace without much error the
limits of integration Z, and Z, by -3 andg. Thus 51 may be

approximated by

h/2 A
- e _ 13 __Zf_ Sk
U ygem = Uy *+ 4v¥ch - lim Gf j 1,dR* dz (57)
e—0
~h/2 €
and after integration
Ugsiem = Us + 477%ch
2EP P,
10,92 h,g , 1-r 2 720 2
- 5= {"— (—) " 3s5@ +t35 (g —) b (58)
1+ 2(1-1/) 3'2 | +v ‘h et
25 2 ~ 2
v246u+25 E P10 h3 1 P20 .
+ @tz h} A
3(1-v?)2 ct hc

which in the limit, as R —»» and 6,— 0, in equal biaxial tension
G. along the periphery of a flat sheet, must be equal to (see ref.
[12])

7fC2

e Sh —_—
U =U(')+4'Y Ch-m(k-l) 0'e2 -

5 2
system (3-k) o (59)
Thus we have determined the value for A%, namely

% _ 16vc 16(1-v) S
A=95 Y o 7o

(60)



Efthymios S. Folias 33

Substituting in 58 for A* and applying the basic condition 45, the
fracture criterion is seen to be:

2.5 2,8
2 E°P h
47*h _ mc {33+6u—7y 10 "

4G Ty 22 9 ct

(61)

~ 2
9-7v Fao 16v

¥ 3(T+) o8 0 971w T

where

N c*h T, 16-13v,  4-3v N
Py = - { + (v + 4n P}
0 {2 Rp(a-v ) 2 8 ¢

(62)

h?c?3 . 473, .
b 1+ A%} + 0 (%2 an
62 (4-v,)D 32 4-v,

and
°4h‘—’e{ 37 2} n?c?2*R oy (13, 3 Y 4
1+ 550" p+—=2 0 (on + S (v + n P +HO( A n))
32 63 (4-1)) {53 8 D)

(63)

Finally introducing 62 and 63 into 62 we arrive after some
rearrangement at:

2 4-3y
(33+6v=Ty )4v (1+ & o Az) =2, 4v (1+ 37{)3) o2
3(9_71/)(4:-_,/0)2 16 4-v b 1+v 16 e
2 16-3v 4-3v 4-3v
8 (33+6v-Tv " )v o o o , A
+ [~ = —33 + 5 Y +—g lnz) +

3 V1-v7 (9-Tv)(4-v )"

8v [T=v 1 13,3 .3, Ny 2== _ 16Gy°
+E T+ (4-vo)(ﬁ+_§7+8m4)]kceob_ TC (64)

which, for the case of a flat sheet, i.e. A = 0, reduces to the
following simple form:

2
(33+6v-Tv")d4y —2 v =2 _ 16Gy (o‘

+ 65)
3(4-v_)%(9-Tv) b (

For v = % equation 64 becomes

0.21 (1 + 0.122%) 32 + (1 + 0.592%) G?

A 2= = 168Gy _ , * 2
- (0.24 + 0.07T M P A" 0 o ==2L =(0) (66)
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which clearly represents a family of ellipses. In view of 66 we
can obtain a relation between the critical crack length in a shell

and the critical crack length in a plate, i.e. for v = 1

3
[0.21 52 +5°] (4
") _ b e Plate cr” Plate
cr’Shell [0.21(1+o.12x2)52+(1+0 59?3)52'(0 24+0. 07’“‘”‘2—_1: Shell
(67)

for example if A = 1 and (crb)P = (Eb)S = ('cFe)S = ('Ee)P, then 67
reduces to:

) ~ 0.76 (1 ) (68)

2
cr “Shell cr’ Plate

This clearly shows that the critical crack length for a spherical
shell is less than that of a flat sheet, and as is seen by 67
the ratio depends upon the curvature. This agrees with the
statement following equations 39 and 40.

For the special case where (crb)P = (Eb)S = (‘Ee)s = (c?e)P we

obtain the following expression

(T§.) = 1 3 (69)
p o 1+ (0.31 - 0.0611’1—4-))\

%

08}

)

0.2

Fig. 4. Square root ratio of critical crack lengths in a spherical cap and a flat plate, for

= 1/3; A= 4\/12(1-\,2)

Rh
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This ratio is less than 1 for all A < 7. We conjecture that for
A > 7 the same character will possibly be preserved, but more
terms in the basic solution, say up to A4, would be required to
verify this point. As we have indicated, however, for most
practical cases A is less than 2 hence 69 gives a good approx-
imation. A plot of equation 69 given in fig, 4. This type of
behavior was also obtainedexperimentally, for cracked cylindrical
shells, by Sechler and Williams [2].

Returning to equation 66 we note that it can also be written
in the form

(1 +0.59 2%) (6‘3)2 (0.24 +0.07 4 xe Py O
. —)" - . . nz)l(‘)n(—-:)+

g o2 o3
S S S

(70)

G
+0.21 (1 +0.122%) (%=1

g
S

This obviously represents a family of ellipses, which are plotted
for different values of the parameter A, see fig. 5. For A greater

[K¢]

O/ s

Fig. 5. Extenmsion-bending interaction cwve for a spherical cap, for v = 1/3;

x =V 12(1-vY S
=

Rh

than 1.5 we will need higher orders of A for the determination

of the ellipses; therefore for A = 5, 10 we show just the in-

tercepts.* It is also clear from fig., 5 that the applied safe

load in a cracked spherical shell decreases with a decrease in

radius of curvature. For example, if along the crack there is

a residual load of equal bending and stretching a flat sheet
5

can carry, before failure occurs, up to a load of 0.88 (——e;-) while
: o

a spherical shell characterized with the parameter A = 1 can

G
carry only up to 0.76 (——i—), i.e. approximately 14% less load

o2
than a flat sheet.

* Cwrve for A = 2 follows the anticipated trend.



Fig.6. Spherical cap used for strain measurements.

Fig.7. Close - up of strain gauge locations.
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EXPERIMENTAL VERIFICATION
Description of Expeviment

To compare theoretical and actual behavior of an initially
curved specimen, a preliminary experiment was conducted, We
have considered a clamped segment of a shallow spherical shell,
containing at the apex a radial cut of length 0.46 in. The shell
was subjected to a uniform internal pressure q,, and the strain
€, at three different positions along the direction of crack
propagation was recorded as a function of q,. The design of
the experiment did not permit a determination of critical crack
length, furthermore the copper material is too ductile for
brittle fracture theory to apply.

Preparations

The shallow shell segment was constructed by the method of
"copper electroforming.'™ Its characteristics were h = 0.009
in., R =20 in., 6 = 0.4 in., R, =4.25in., v = %, E =
16 x 10° 1bs/in®. A hole of 0.012 in. diameter was drilled at
the apex of the shell segment, and a crack was sawed with a
jeweler's saw of 0,007 in, thickness. Finally, the ends of the
crack were smoothed by the ''diamond thread method, "'**
(diameter of diamond thread less than 0.005 in.). In the process
of drilling and of sawing, a wax backing was used in order to
avoid damaging of the shell, Next, along the line of crack pro-
longation, three strain gages were attached on the shell to meas-
ure the strains in the Y direction (see figs. 6,7). The shell was
cemented between two circular rings, with R, = 4 in. as the inside
radius (see fig. 8). Next the crack was sealed internally with two
layers of acetate fibre tape. The first layer was a square of 2 x 2

CEMENT

CRACK

X| VALVE -

Fig.8. Schematic of testing apparatus,
inches, andthe secondlayer was a rectangular one of 2 x 1 inches.

The following table gives the gage factors and positions of the
gages from the crack tip,

[ c
Gage no, G.F.=Gage Factor X -1 X -1

1 2.10 0.07 1.81

2 2.09 0.29 0.89
3 2.09 0.48 0.69

* See ref. [13].
* A cotton thread impregnated with 6 micron diamond paste.
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In fig. 9 we have plotted voltage vs. gage pressure, and because
the curves for small pressures were not quite straight lines, a
second run was conducted a few hours later. It gave better results
(fig. 10)., The change between first and second runs is attributed
to warming up of the resistance gages in the electronic equipment

14
2 F
GAGE NO. |
o }
GAGE NO. 2
m -
= 8 GAGE NO. 3
o]
>
[ 2]
o 6 |-
*
[T
-
g -
o 4
2 fr
0 20 40 60 80

q, CM of Hg

Fig.9. Test no.1l. Data for a clamped spherical cap containing a crack.

and "'setting' of the strain gages. Even for the second run, the
curves are slightly curved at the origin. It is possible that the
tape carries -a small part of the load. In any case, we consider
the slope of the curve which is given by

“voltage
= =
C slope L. \q, (71)
where A,F. = amplifier factor = 5., In view of this, we can

compute the strains from
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14 |

12 I

3
EyoLt* 10 VOLTS

0 20 40 60 80

q, ©cm of Hg

Fig.10. Test no.2. Data for a clamped spherical cap containing a crack.

€ = _L_ C qo ( 72 )
Yexp P.S.V. G.F.
Gage Theoretical ¢ C Exp. ¢ C Exp. €
No. y Y y
1 0. '75)(.‘10_4q0 2. ()3)(1()_4 0. 96x10-4q6 2. 42x1()—4 0. '7'7)(10.4q0

4

2 0.37x10“4qo 17051074 0.54x10f4q0 1.37x10° 0.44)(10"4qo

- - -4
3 0.29x10_4q0 1.3‘7x10_4 0.44x10 4qo 1.15x10 4 0.36x10 qo

first run second run
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where P.S.V. = Power supply voltage = 6 volts (measured).
The theoretical strains were calculated from equation 43 and
the comparison with experimentally determined values follows,

Conclusions

In fig, 11, we compare the theoretical predicted strains with
the experimental ones. It is easy to see that close to the crack
tip the theoretical results are slightlylower than the experimental
ones, e.g. there exists an error of about 3% for the first gage.

1.0 3
\\
0.8 |- E\ \
\
osf \\ \
—e-!- X 104 \ k\
do \a\ S~y | -TEST
[lbs.]" 0.4 S~_a2-TEST
2
n. THEORETICAL
0.2t
| | L 1
o) 0.2 0.4 0.6 08 1.0
X -1(in.)

Fig.1l. Comparison of experimental and theoretical strains ahead of the crack.

We recall that in the theoretical formula we neglected terms
of O(A%). This fact could contribute to the difference, as well
as the averaging effect of the finite gage thickness. As we
move further away from the crack tip the theoretical values
become smaller than the experimental ones. This is to be
expected, since now e is large and the non-singular terms
become significant, Our theoretical results were computed on
the basis of only the singular term and furthermore only up to
terms of O(A2),

While it should be pointed out that the bending stresses are
practically negligible for this particular test configuration, it
was found that on the whole the experimental and theoretical
results compare very well.
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CONCLUSIONS

The local stresses near the crack point are found to be pro-
portional to 1/+e which is characteristic for crack problems.
Furthermore, the angular distribution around the crack tip is
exactly the same as that of a flat sheet, and the curvature ap-
pears only in the intensity factors and in such a way that for
R —w we recover the flat sheet behavior. A typical term is

1+ tn—C S+ o (X
Oheti ™~ Tplate (const + const £n ) (EE)

2

VvRh
(73)

where the expression in the parentheses is a positive quantity.
The general effect of initial curvature, in reference to that of
a flat sheet, is to increase the stress in the neighborhood of
the crack point., Furthermore, it is of some practical value
to be able to correlate flat sheet behavior with that of initially
curved specimens. In experimental work on brittle fracture for
example, considerable time might be saved since by 73 we would
expect to predict the response behavior of curved sheets from
flat sheet tests,

The stresses also indicate that there exists an interaction
between bending and stretching, i.e. bending loadings will
generally produce both bending and stretching stresses, and
vice versa.

It is well known that large, thin-walled pressure vessels
resemble balloons and like balloons are subject to puncture and
explosive loss. For any given material, under a specified stress
field due to internal pressure, there will be a crack length in
the material which will be self propagating. Crack lengths less
than the critical value will cause leakage but not destruction.
However, if the critical length is ever reached, either by
penetration or by the growth of a small fatigue crack, the ex-
plosion and complete loss of the structure occurs. This critical
crack length, using Griffith's criterion, was shown to depend
upon the stress field, the radius and thickness of the wvessel,
as well as the material itself (see 64). We were also able to
obtain a relation for the ratio critical crack length of a spherical
shell over critical crack length of a flat sheet (see eq. 67). In
general this ratio is less than unity, which again indicates
clearly that a cracked initially curved shell is weaker than a
cracked flat sheet subjected to the same loading.

In conclusion it must be emphasized that the classical bending
theory has been used in deducing the foregoing results. Hence
it is inherent that only the Kirchhoff equivalent shear free
condition is satisfied along the crack, and not the vanishing of
both individual shearing stresses. While outside the local region
the stress distribution should be accurate, one might expect the
same type of discrepancy to exist near the crack point as that
found by Knowles and Wang [7] in comparing Kirchhoff and
Reissner bending results for the flat plate case [8, 9]. In this
case the order of the stress singularity remained unchanged but
the circumferential distribution around the crack changed so as
to be precisely the same as that due to solely extensional loading.
Pending further investigation of this effect for initially curved
plates, one is tempted to conjecture that the bending amplitude
and angular distribution would be the same as that of stretching.
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Finally for a clamped spherical shell, the experimental and
theoretical strains €y, at three different locations along the
crack prolongation, compare very well.

ACKNOWLEDGMENTS

The author acknowledges several useful discussions of this
problem with Professor M. L. Williams and Mr. J. L. Swedlow
of the California Institute of Technology. The research reported
herein was sponsored in part by the Aerospace Research
Laboratories, Office of Aerospace Research of the United States
Air Force,

Received June 1964,

REFERENCES

1. Ang, D. D. and Williams, M. L., "Combined Stresses in an Orthotropic Plate Having
a Finite Crack,” Journal of Applied Mechanics, vol. 28, 1961, pp. 372-378.

2. Sechler, E. E. and Williams, M. L., "The Critical Crack Length in Pressurized, Mono-
coque Cylinders,” Final Report on Contract NAw - 6525, California Institute of Tech-
nology, September 1959,

3. Reissner, E., "On Some Problems in Shell Theory," Structural Mechanics, Proceedings
of the First Symposium on Naval Structwral Mechanics, Pergamon Press, 1960, pp.
T4-113.

4, Reissner, E., "A Note on Membrane and Bending Stresses in Spherical Shells," J. Soc.
Industr. Appl. Math., vol. 4, 1956, pp. 230-240,

5. Folias, Efthymios §., "The Stresses in a Cracked Spherical Shell,” (Submitted to the
Journal of Mathematics and Physics, 1964).

6. Folias, Efthymios S., "The Stresses in a Spherical Shell Containing a Crack,” ARL
64 - 23, Aerospace Research Laboratories, Office of Aerospace Research, U. S. Air
Force, January 1964.

7. Knowles, J. K. and Wang, N. M., "On the Bending of an Elastic Plate Containing a
Crack,” Journal of Mathematics and Physics, vol. 89, 1960, pp. 223-236.

8, Williams, M.L., "The Bending Stress Distribution at the Base of a Stationary Crack,”
Journal of Applied Mechanics, vol, 28, Trans. ASME, vol. 83, Series E, 1961,
pp. T18-82, .

9. Williams, M. L., "On the Stress Distribution at the Base of a Stationary Crack,” Jour-
nal of Applied Mechanics, vol, 24, March 1957, pp. 109-114.

10, Reissper, E., "Stresses and Small Displacements of Shallow Spherical Shells I, II,"
Journal of Mathematics and Physics, vol. 25, 1946, pp. 8085, 279-300,

11, Griffith, A. A., "The Theory of Rupture,” Proceedings of the First International Con-
gress of Applied Mechanics, Delft, 1924, pp. 55-63.

12. Swedlow, J. L., "On Griffith's Theory of Fracture,” GALCIT SM 63 -8, Californialn~
stitute of Technology, March 1963,

13, Parmerter, R, R., "The Buckling of Clamped Shallow Spherical Shells Under Uniform
Pressure,” Ph. D. Dissertation, California Institute of Technology, September 1963.

14, Mikhlin, S. G., Integral Equations, English translation by A. H. Armstrong, pub-
lished by Pergamon Press, 1957.




NOTATION

c = half crack length

) = En®/012(1-v?)] = flexural rigidity
E = Young's modulus of elasticity
F(X,Y) = stress function

G = shear modulus

h = thickness

h* = as defined on fig,3

i = \/——T

Is = 2c = crack length of shell

] p = crack length of plate

Lerds = critical crack length of shell
Uerdp = critical crack length of plate
m, = constant as defined in text
My, My, Mxy = moment components

ng = constant as defined in text
Ny, Ny' ny = membrane forces

p = periphery

q(X,Y) = internal pressure

9, = upiform internal pressure

3 =Vx2+y2

_o
S = :—
R = radius of curvature of the shell
R = Vx2 4+ 2
R, = given R
S = surface area of the shell
ty = constant as defined in text
u = energy
1 = constant as defined in text
Vy = equivalent shear
W(X,Y) = displacement function
X, ¥, 2 = dimensionless coordinates with respect to the crack length
. 4 = rectangular cartesian coordinates
p> =t

(-t

0.5768 = Euler's constant

<
"
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0l = surface energy per unit area

= height of the shell

5
e =vVED .+ D2

C

Sxr Eyr By = strain componeants
6 = wn-1 L1
4 Ehc?  12(1-v%)c4
A fg = 7733
R™D Rbh

v = Poisson's ratio
Vo = 1-v
: = VL2432 = V(x84 g2
G, .0, ,7T = bending stress components

*» Yo *Vb & P
6, .,0_,T = stretching stress components

Xe Ve Xe g po
Ex' Ey’ ?Xy = applied stress components at the crack
G‘S = critical (fracture) stress for shell
o'f, = critical (fracture) siress for plate

O, 7).P(x,y) = harmonic functions

£(x,y) = deflection of a plate on an elastic foundation.

APPENDIX
The deflection function W and the stress function F are:
[ - Vsz—i)@ly] - 452-»1)\2]}7] -s|y]
Wix,y*) = LPle + Pye +
0

Pjye cosxsds

2 { 22 242 _
Fix, y*) = 2 RDJ . Iyl _pe vl , p,e syl

P cosxsds
c? 0 L !
where
A2A_ T (s)
S
P (s) = ———{A.J (s) + 2 2 4+ ond)
1 T T }
s A2B, J,(s) .
P, (s) = —S-‘/——zT-I—-}; {BlJl(s) + 3 + Oo0\%) }
AP (A+B,) J, (s)
Py(s) = -(A+B )J (s) - - -
a2

3 (Al_Bl) Jl(S) + O(K‘L)
VOS
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2
XHA-B,) I, (s)

_ 4
Pé(s) = - (Al-Bl) Jl(s) 3 3 + O™
where
2 RD (
L= (A, + B)
242 ! !
2 2 2
nc m A% AEhD ¢ 92
RSNt e Tl ETETE I LB
I ¥z (4py 32 8716 ""18
0
+ O(\* £n))
n_ A2 8-Tv,  4-3v, 4-3v
2«/_ - (8B - 2ERD (4-v,) B AR L M)}
m 9 4- 31/
0 0. 4
+—{1+Z } + O tnr)
Va(4-v ) R
o2
A, + B, = -3 (A-B)
4-3v, a2
A, - B, = (41/) (A, +B)

L Ll . .
RESUME - On montre que la déformation d'une feuille mince ayant une courbure sphérique
initiale, est associ€e avec celle d'une plaque mince reposant sur. une fondation €lastique.

En utilisant une forme intégrale, on résoud les €quations couplées de Reissner, pour une
coque avec une fracture de longueur 2c, pour le plan intemne et les contraintes de flexion
de Kirchhoff, D'autre part on trouve que la forme explicite des contraintes prds due point
de fracture, dépend de 1'inverse de la demi puissance de la distance, sans dimension, au
point €, Le caractére du champs de contrainte combinée, flexiontension, pr#t de 1'extrémité
de la fracture, est &wudié en détail dans le cas particulier d'une fracture radiale dans une
calotte sphérique soumise 3 une pression inteme uniforme g et qui est encastrée 3 la limite
R = Ro' En attendant une é&tude compllte de la solutmn des résultats approchés pour les
contraintes combinées de surface, prés de 1'extrémité de la fracture normale, et le long de
l1a ligne de prolongation de la fracture, ont donnés respectivement

ay (8,0) =0y (,0) = 0.45 Vile (a,R/M)
ou v =1/3, ¢ = 0,23 inch, Ry = 4,25 inch et A = 0,98,

11 est interressant de noter que les contraintes o, et ¢y le long de la ligne de prolongation
de fracture sont &gales pour cette géoméuie, En général, elles ont le méme signe et ne
différent 1ég&rement qu’en module, du fait de la composante de flexion. Finalement les ré-
sultats expérimentaux et théoriques pour gy le long de la ligne de prolongation de la frac-
ture coincident bien,

ZUSAMMENFASSUNG - Es wird gezeigt, dassdie Verformung einer duennen, anfaenglich sphae=
risch gekruemmiten Platte mit der Verformung einer anfaenglich ebenen Platte, die elastisch
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gebettet ist, verbunden ist, Mit Hilfe einer Integralformulation werden die gekuppelten
Reissner~-Gleichungen fuer eine Schale, die einen Riss der Laenge 2c enthaelt, fuer die ebenen
und die Kirchhoff Biegespannungen geloest. Unter anderem wurde festgestellt, dass die ex-
plizite Form der Spannungen in der Naehe des Bruchpunktes umgekehrt proportional der Wurzel
des dimensionslosen Abstandes vom Punkte ist, Der Charakter des Dehnungs-Biegespannungs-
feldes in der Umgebung der Risspitze wird im Detail untersucht fuer den speziellen Fall eines
radialen Risses in einer sphaerischen Kappe unter gleichfoermigen Innendruck q,, die an
ihrer Auflage R = ﬁo eingeklemmt ist. Die angenaecherten Ergebnisse ~ das ausfuehrliche
Studium der Loesungen ist noch nicht abgeschlossen - fuer die kombinierten Oberflaechen-
spannungen nahe der Risspitze senkrecht zum Riss und in Richtung des Risses sind von der
Form:

oy (5,0) =0y (£,0) = 0.45 Vi/e (a R/M)
et v =1/3, ¢ = 0,23 inch, R, = 4.25 inch und A = 0,98,

Es ist interessant, dass die Spannungen oy und oy entlang der Linie der Rissfortpflanzung
gleich sind fuer diessen Fall. Im allgemeinen werden sie dasselbe Vorzeichen haben und
sich nur wenig in der absoluten Groesse unterscheiden infolge der Biegekomponente. Die ex-
perimentellen und theoretischen Ergebnisse fuer gy entlang der Linie der Rissfortpflanzung
stimmen sehr gut ueberein,



