AN AXIAL CRACK IN A PRESSURIZED CYLINDRICAI SHELL
E.S.Folias*

ABSTRACT

Following an earlier analysis of a line crack in a spherical cap, the stresses in a cylindrical shell containing
anaxial crack are presented, The inverse square root singular behavior of the stresses peculiar to crack problems
is obtained in both the extensional and bending components. This singularity may be related to that found
in an initially flat plate by

o
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where the quantity in parentheses is positive. An approximate fracture criterion, based on Griffith's Theory,
is also deduced, and bending-stretching interaction curves for this case are presented.

INTRODUCTION

In-a recent paper(d, the stress fields in the vicinity of a line crack in
a spherical cap were determined. It was pointed out that bending loads
induce extensional stresses, and vice versa, so that the subject of eventual
concern is the simultaneous stress fields produced in an initially curved
sheet containing a crack. Of the two simple geometries which may first
come to mind, a spherical shell, and a cyclindrical shell, the former was
studied first because the radius of curvature is constant in all directions,
affording considerable mathematical simplification. In the latter case, how-
ever, the radius varies between a constant and infinity as one considers
different angular positions with respect to the point of a crack aligned
parallel to the cylinder axis. In a previous treatment of this problem,
Sechler and Williams(? suggested an approximate equation based upon the
behavior of a beam on an elastic foundation, and were able to obtain rea-
sonable agreement with experimental results. Using techniques developed
earlier, the author has been able to investigate this problem analytically,
and the results are given below; certain details of this work have been
omitted here but may be found elsewhere(®). '

FORMULATION OF THE PROBLEM

Consider a portion of a thin, shallow cylindrical shell of constant thick-
ness h and subjected to an internal pressure gq,. The material of the shell
is assumed to be homogeneous and isotropic; [{)arallel to the axis there
exists a cut of length 2c. Following Marguerre(?, the coupled differential
equations governing the displacement function W and the stress function
F, with x and y as dimensionless rectangular coordinates of the base plane
(see Figure 1) are given by

2 n2
Ehc® 8*W + V4F = 0 (1)
R 9x?
4 C2 aZF
VW - ——e— = 1’104 (2)
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Figure 1, Geometry and Coordinates

where R is the radius of the cylinder. As to boundary conditions, one must
require that the normal moment, equivalent vertical shear, and normal
and tangential in-plane stresses vanish along the crack. However, suppose
that one has already found* a particular solution satisfying eqns 1 and 2,
but that there is a residual normal moment My, equivalent vertical shear
Vy, normal in-plane stress Ny, and in-plane tangential stress Ny, , along
the crack [x]|< 1 of the form:

M{? = - Dm,/c? (3)
v, =0 (4)
NP = n /e (5)
ny(P) = 0 (6)

where m, and n, will be considered constants for simplicity.

Assuming, therefore, that a particular solution has been found, we need
to find two functions of the dimensionless coordinates (x,y), W(x,y) and
F(x,y), such that they satisfy the partial differential equations 1 and 2 and
the following boundary conditions.

Aty = 0 and ix1<1:

D[a*w 82W | Dm,
My(x,o) = L e .

c2|dy? ax?

Vy (x,0) = —2 —+ {2 -v)
3

Ny(x,o)=————=— (9)

Nyy (x,0) = - — =0 (10)

Aty =0 and I1x| >1 we must satisfy the continuity requirements, namely

* As an illustration of how the local solution may be combined in a particular case see Reference 3.
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. n n n
bm 18w -2 wol =0 (11)
[y] =o|@y" ay"
lim 8" 3" ]
(Ft) -—=—(F-)| =0 (12)
lyl -0 ayﬂ ayl] .
n=0,1,2,3.

Furthermore, we shall limit ourselves to large radii of curvature, i.e.,
small deviations from flat sheets; we thus require that the displacement
function W and the stress function F together with their first derivatives
be finite far from the crack. In this manner, we avoid. infinite stresses
and displacements in the region far away from the crack. These restric-
tions at infinity simplify the mathematical complexities of the problem
considerably, and correspond to the usual expectations of St. Venant's prin-
ciple.

METHOD OF SOLU TION

We construct the following integral representatlons Whlch have the proper

symmetrical behavior with respect to x, with A* = Ehc /R D
W(x,y?) = J {P e T VGRARy], B e’ G0yl Pe JORINH
+ Pye’ s(s438 M} cos xs ds (13)
F(X, y*—') = j' {P Vs(s-)\alyl_*_Pz e-Vs(s+)\D£)|yl - P3e-\/s(s-7\5) |y|
$(s419) |y‘}cos xs ds (14)

where the P; (i = 1,2, 3,4) are arbitrary functions of s to be determined
from the boundary cond1t10ns and the + signs refer toy > 0 and y < O,
respectively. Also o = B = (- i)t

Assuming that we can dlfferentlate under the integral sign, formally
substituting eqns 13 and 14 into eqns 7-10 yields respectively:

lyllifoj’ -{Pl s (v, 8 -dq) e Vs0~A) b+ B, s (Vo8 +2a) e Vi) |y
© 4B s (s -2p) e ERA
+ Py s (vys + AB) e VsGs+AR ‘yl}cos xs ds = m,; (15)

x] <1

lim _4_-_5 {Pls(v°s+)\oz)\/ s(s - Aae VM| 4 p g (v, 8 - Aa) V(s ¥ Aa)

- Vs(s+a) lyl + P3 S(VOS +A—B) S(S _ AB) e'VS(S‘}\ﬁ) ‘y‘

+ P, s(y,s - AB) V s(s +1P) e = Vs(s+1B) M} cos xs ds = 0; (16)

Ixj< 1
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+lim i VEhD j {Pl e'\/s(s-m) Iyl + Pze-\/s(sﬂoc) |y| ) P3e--\/s(s'._‘”3 lyl

—0
1¥] 5 P, e-\/s(s+xB) lyl} g2

cos xs ds = ng;

(17)

Ix]< 1

lim i \/EhDj‘ {P1 S(s-na) e VG vl + P, Vs(s+ia) e VSETAD |y

|y]==0 ° '

- P,Vs(s-1p e” 6o ]

- P, Va(s +Ap) e Vst M} s sinxsds =0 (18)
x| <1

where again the t signs refer toy > 0 and y <0, respectively, and v, = 1-v.
A sufficient condition for 16 and 18 to be satisfied is to set the integrands
equal to zero. This leads to:

VsE-ABIP, = - (25 . 1) [Ve(s-%d B, + Vs(s+1d B)
o Vs(s-\a) P~ Vs(s+ia) Pz] (19)

&
e~

2

1

Vs(s+apB) Py, = (;LS + —%—) [\/ s(s-da) P, + Vs(s+ia) P2]

B
+ 5% [V s(s-la) P, - Vs(s+Aq Pz] (20)

Next, it may easily be shown that the continuity conditions are satisfied
if we consider the following combinations to vanish

[ {p, vesrar 1+29

+ P, Vs(s+ra) (1-)%)} cos xs ds = 0; ]x | >1 (21)
I {Pl V s(s - Aa) (1 - %}
+ B, V s(s+7wz)(1+%)}cosxs ds=0;lx|>1 (22)

We have thus reduced our problem to solving the dual integral equations
15, 17, 21, and 22 for the unknown functions P,(s) and Py(s). These may
be transformed to a set of coupled singular integral equations of the Cauchy
type, a solution of which may be found in a series form for small values
of the parameter A. Details of the method of solution may be found in
Reference 3. It is an easy matter to show that the physical range of A is
0 £ A< 20 and for most practical cases 0< A < 2, depending upon the
size of the crack.

Without going into the details, the displacement and stress functions are;
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{(ﬁg+5) Is) - Ve
.8 xe 2 Vs(s-2ra)

(ﬁo_ _._]_3.3) J, (s) . Vs(s+ad) |y . B,
s ara 2 Vs(s+traa) s 28

J. (s -Vs(s - AB) s 1 B,
_ 1 (s) . s(s=28) [y +[(—-——+—)__°. (23)
Vs(s-2AB) A8 2 s 228
-\s(s+ 2B
—_— Jl(s) e s+ P + } cosxsds
Vs(s+2ag)
- V(s -1
. . A, J(s) e VETAW Al B,
F(x,y%) = -iVEhD (—+-——) + (= - =)
o s A 2V s{s-2Aag) s Ao
. “VIGD
I(s) e VO W (Jos 1A, By | i(s) e e
2 Vs(s+ ) | AB 2 s 2208| Vs(s-2B) (24)
(UOS + l)-Ao * Bo Ji(s) e’ S+
AB 2 s 2 Aﬁ_ V s(s+AB)
+ .. } cosxsds
where
A® 42 -37v A
Ay = - —o { ° +(12-10v) (7+ln—)}
VEhD 32vu, (4 - v,) 3 8
(25)
2v, - 5,2 - 8 A?
Mo {1+1v0 5 Yo . }+O()\4An>\)
v, (4 vg) 4 v, (4-vg) 16
2 5 _ 2 _ g 2» 2 2
n, - ng {1+1r)\ _+12§o 5 v, 8 N A" B Ty,
iVEhD 16 | 4 4v, (4 -vyp) 32 v, (4 - vy) 3
A by
(10w - 14v,) + 47 i+ (1002 - 18v) (v +4a %)+ 6 v, (y + D) }
.8 8
m, A a2 |5 12vus -5v,2-8 |, A%a? |37y, - 42
+ " 1Y, + Y, - 0 0 +
v, (4 - vg) 16 |4  4v, (4-1,) 16 6 (26)
A A
+ 5u, (v ) -6 (7+Zn—)] +0 (A fn )
8 8
having used vy = 0,5768. = Euler's constant. Furthermore, it may be

shown, that this series form solution converges to the exact solution for
small values of the parameter A.
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STRESS DISTRIBUTION NEAR THE CRACK POINT

The bending and extensional stress components are defined in terms of
the displacement function W and stress function F as:

E r 2w 2
o = 22 oW AW (27)
b (1-v%)c | ox? 9y 2
E [o? tw
o = . z W + v 2 (28)
N (1-v2)c [ay? ox?
2G 2w
_ z 0 (29)
'T - ———
b c  9x0dy
1 3%F
o = e 30
*e he?2 8y2 (30)
2
1 9
oy = ——— (31)
e he? 9x2
, = 1 9°F (32)
X
Y. he? axay

where z is the dimensionless distance through the thickness h of the shell,
measured from the middle surface. Then in view of eqns 23 and 24, the
stresses can be expressed in an integral form. When evaluated, these give
the following results, where e€el® = x - 1 + iy:

Bending Stresses: On the surface z = h/2c

P, 3 - 3v 0 1-
o, = b (- COS — - Y cos 59-) + 0 (€°) (33)
b V2e 4 2 4 2
P 11 + 5v e 1-v
o =L (— cos8 —+ cos 5-) + O (%) (34)
b VIZe 4 2 4 2
P T+v 0 1-v
T = 2 - sin — - sin 5°) + O (e9) (35)
b V2e 4 2 4 2
where
3 no A° 5+ 37v ta/
P = + 2(1+5v) {y +In \/8)
b 16(3+v)Vi2(l- v?) he? 3

2
+ O (4 fnA) (36)

6 m, D 1+2v+5v% m
+ 1

T 4(3+v)(1-v) 16 |

(3+v) h?c? |_
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Similarly we find through the thickness
Extensional Stresses:

Pe

3 8 1
o, = (— cos —+— cos 59) + O (e°) (37)
e V2e 4 2 4 2
P
0
o, = : (icos-—-—lcos 59)+O(e°) (38)
e V2e 4 2 4 2
P
1 (°] 1 0
Tey, = ° (= sin — - = sin 52) + O (€°) (39)
Ye  Vic 4 2 4 2
where
P, = iy +i’f>¢2]
he? 64
Viz(1 - v%) m, D A? [5 + 370
32 (3+v) (1 -v)hic?l 3
+2(1+59) ty +/n A/8)] + O *fn ) (40)
As a result of the Kirchhoff boundary condition, the bending shear stress
Txyb does not vanish in the free edge. For the flat sheet this difficulty

was discussed by Knowles and Wang who considered Reissner bending(® .
Furthermore, it is apparent from the above equations that there exists an
interaction between bending and stretching, except that in the limit as A -0
the stresses of a flat sheet are recovered and coincide with those obtained
previously for bending(® and extensionl? . We are thus in a position to
correlate, at least locally, flat sheet behavior with that of initially curved
specimens.

\
\\\\\;\

%

Figure 2, Cracked Shell under Uniform Axial Extension Nx and Internal Pressure qo
As a practical matter, consider a shell subjected to a uniform internal

R
do , My = 0 far away from the
2
crack (see Figure 2). The stresses along the line of crack prolongation
are found for v = 1/3 and A = 0.98 to be:

pressure g, with an axial extension N, =

Y total

o ( ) 0.79 R/h (41)
€,0) %
Ve o
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0.97
o, (€,0)x = q, R/h (42)

total €

where, based on the Kirchhoff theory, the stresses o, and o, have the
same sign but differ in magnitude. This difference is due to thgv fact that
in a cylindrical shell the curvature varies between zero and a constant as
one considers different angular positions with respect to the line of the
crack. On the other hand, for a spherical shell(?® and for a flat plate(®,
for which the curvailure remains constant in all directions, we obtain a
"hydrostatic tension'' stress field.

FRACTURE CRITERION

In precisely the same manner used for a fracture criterion for a spherical
cap, we derive the following approximate criterion for a cylindrical panel,
at v = 1/3 and the Griffith stress o% = (16G7*/7rc)%:

(1 +0,49 22%) (Go/o0%)2 + 0.21 (1 - 0.10 X?) (op/o%)2

- (0.04 - 0.102) A% (G, /o*) (6p/0%) + O (X*£n2r) = 1 (43)

where the barred quantities denote applied stress. This equation represents
a family of ellipses which are plotted in Figure 3. Note that the curves

Az0

Lo

Tole*

Figure 3. Extension-Bending Interaction Curves for a Cylindrical Shell Containing a Crack, for v = 1/3;

A= V1201 - 0B /YT

cross each other, which did not occur in the case of a spherical shell
(see Figure 4). The author conjectures that this is due to the slower rate
of convergence of the former case and that, when higher orders of A are
used in the solution, the curves will correct themselves to give the same
trend.

Figure 4, Extension-Bending Interaction Curves for a Shallow Spherical Shell Containing a Crack, for v = 1/3;
A= % 12(1 - 02) ¢/V Rh

For the special case G, = 0 eqn 43 reduces to:

(1+0.492%) (o, /o%)2 + O (¥ nn) = 1 (44)
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Specializing further to a cracked shell under uniform axial extension N, =
g,R/2 and internal pressure (,

R/h?
(Zo /)z 1-0.49 2% (45)

o*

which gives the maximum internal pressure that the shell may withstand
before fracture. A plot of eqn 45 is given in Figure 5. Similar resulis
were obtained experimentally by Sechler and Williams(® for pressurized
monocogue cylinders.

05

(Ko}
o5
o]

4
Figure 5. Critical (Fracture) Pressure in a Cylindrical Shell, for v = 1/3; A = Vv 12(1 - 02) c¢/V Rh

CONCLUSIONS

As in the case of a spherical shell,
(i) the stresses are proportional to 1/Ve
(ii) the stresses have the same angular distribution as that of a flat plate
(iii) an interaction occurs between bending and stretching
(iv) the stress intensity factors are functions of R;
in the limit as R-» « we recover the flat plate
expressions. Thus we may write

O shell 2 1
M s 1+(a+bsm—) 2 +0() (46)

O plate VRO Rh R?

where the expression in parentheses is a positive quantity. From this and
the corresponding result for a spherical cap, it would appear that the general
effect of initial curvature is to increase the stress in the neighborhood of
the crack point. It is also of some practical value to be able to correlate
flat sheet behavior with that of initially curved specimens. In experimental
work on brittle fracture for example, considerable effort might be saved
since, by eqn 46, we would expect to predict the behavior of curved sheets
from flat sheet tests.

In conclusion it must be emphasized that the classical bending theory
has been used in deducing the foregoing results. Hence only the Kirchhoff
shear condition is satisfied along the crack, and not the vanishing of both
individual shearing stresses. While outside the local region the stress
distribution should be accurate, one might expect the same type of discrep-
ancy to exist near the crack joint as that found by Knowles and Wang in
comparing Kirchhoff and Reissner bending results for the flat plate case.
In this case the order of the stress singularity remained unchanged but the
circumferential distribution around the crack changed so as to be precisely
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the same as that due to solely extensional loading. Pending further inves-
tigation of this effect for initially curved plates, one is tempted to conjecture
that the bending amplitude and angular distribution would be the same as
that of stretching. '

ACKNOWLEDGMENT

This work was supported in part by the USAF Aerospace Research Labo-
ratories, Office of Aerospace Research. The author thanks J.L.Swedlow
for help in preparation of the manuscript.

Received February 23, 1965,

REFERENCES

1. E.S.Folias International Journal of Fracture Mechanics, 1, 1, March 1965. pp.20-46,
See also ARL 64-23, Aerospace Research Laboratories, Office of Aerospace Research,
U.S. Air Force, January 1964.

"

2. E.E.Sechler and "The Critical Crack Length in Pressurized, Monocoque Cylinders.” Final Report on
M. L. Williams Contract NAw-6525, California Institute of Technology, September 1959.
See also:M, L. Williams, Proceedings of the Crack Propagation Symposium, 1, College
of Aeronautics, Cranfield (England), September 1961, pp.130-165.

3. E.S.Folias ARL 64-174, Aerospace Research Laboratories, Office of Aerospace Research, U.S.
Air Force, October 1964,
4. K.Marguerre Proceedings of Fifth Congress of Applied Mechanics, 1938, pp.93-101.,
5. J.K.Knowles and Journal of Mathematics and Physics, 39, 1960, pp.223-236.
N.M.Wang
6. M,L,Williams Journal of Applied Mechanics, 28, March 1961, pp.78-82.
7. M.L.Williams Journal of Applied Mechanics, 24, March 1957, pp.109-114,

RESUME - A la suite d'une analyse antérieute d'une fissure dans une coquille sphérique, on a présenté les
contraintes dans une coque cylindrique contenent une fente axiale. Le comportement singulier de 1'inverse
de la racine carrée des contraintes particulidres aux probi®mes de ripture, est obtenu en m&me temps selon
les comﬁ)osantes d'extension et de flexion. Certte singularité peut-&ire rapprochée de celle trouvée dans une
plaque initialement plate, 3 1'aide de:

[ed C C2

~coque ~1 +(a+bfn —)=+,,,

S plaque uRh™ Rh
ot la quantité entre parenthdses est positive. On a dé&duit un crit2re de rupture, bas€ sur la theorie de
Griffith, et on a présent€ les courbes d'interaction entre flexion et tension,

ZUSAMMENFASSUNG - In Fortsetzung der frueheren Analyse eines geradlinigen Risses in einer kugelfoermigen
Kappe werden jetzt die Spannungen in einer Zylinderschale, die einen Riss in axialer Richtung aufweist,
gegeben. Die diesen Problemen eigene Singularitaet der Spannungen, die umgekehrt proportional der Wurzel
aus der Entfernung von der Riss-spitze sind, wird auch hier fuer die Zug- und Biegekomponenten erhalten.
Diese Singularitaet kann zu derjenigen, die in einer urspruenglich ebenen Platte gefunden wird, in folgenden
Zusammenhang gebracht werden

2

G .
_Schale 4, (@a+bfn --c—-) S v,
O platte vRh” Rh

Wobei die Groesse in Klammern positive ist. Ein angenaehertes Bruchkriterium, das auf Griffith's Theorie

beruht, ist abgeleitet worden und Biegungs-Zug Wechselwirkungskurven sind fuer diesen Fall bestimmt wor-
den.



