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ABSTRACT

Using an integral formulation the coupled Marguerre equations
for a cracked cylindrical shell of length 2c are solved for the iﬁ—-plane
and Kirchhoff bending stresses, and, among other things, it is found
that the explicit nature of the stresses near the crack point depends
upon the inverse half power of the non-dimensional distance from the
point €. The character of the combined extension-bending stress
field near the crack tip is investigated in detail for the special case
of an axial crack in a long closed cylindrical shell which is subjected
to uniform internal pressure dq- Pending a complete study of the
solution, approximate results for the combined surface stresses near
the crack tip normal and along the line of crack prolongation are

respectively of the form:

0.79 qu
o (6,0) ~ h + .
y V='31" \/2€
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| SYMBOLS

c = half crack length
[ D = Eh3/[12(1—u2)] = flexural rigidity
| E = Young's modulus of elasticity
| F(X,Y) = stress function

G = shear modulus
3 h = thickness
| i . VI
t Kn = modified Bessel function of the third kind of order n
| IS = 2c = crack length of shell
:r / Ip = crack length of plate
| ucr)s = critical crack length of shell
| ucr)p = critical crack length of plate

L? = kernels as defined in text

Li = lim ij

ly}—~0
m = constant as defined in text

M, M, M = moment components
x'"y' Tx

y
| n = constant as defined in text
‘\ Nx’Ny’ny = membrane forces
q(X,Y) = internal pressure
q, = uniform internal pressure
r = x2 + yz
R = radius of curvature of the shell
to = constant as defined in text
| v, = constant as defined in text
VY = equivalent shear
W(X,Y) = displacement function

v



SYMBOLS

X,Y,% = dimensionless coordinates with respect to the crack length
Xy X4 = rectangular cartesian coordinates
1
a = (i)
1
B = (-i)2
Y = 0.5768 = Euler's constant
sk
Y = surface energy per unit area
2 2
— X-1 X
€ - \/< =0) 4 ()
SX'EY’EZ = strain components
3 = x-¢
0 = tan—1 -}%
\ 4 _ Ehc® _12(1-,%)c*
RZD thz
14 -

= Poisson's ratio

v = 1-p

Vel + y2 = Vix-2)% + y2

©
1]

bending stress components

"

[ » O y T

be

H

Ty stretching stress components
e

= applied stress components at the crack

T = critical (fracture) stress

vi



I INTRODUCTION

In the field of fracture mechanics, considerable work has
been carried out on initially flat sheets subjected to either bending
or extensional stresses, and for small deformations the superposi-
tion of these separate effects [1] is permissible. On the other hand,
if a thin sheet is initially curved, a bending (or extensional) loading
will generally produce both bending and extensional stresses. The
subject of eventual concern therefore is that of the simultaneous
stress fields broduced in an initially curved sheet containing a
crack.

Two geometries immediately come to mind: a spherical
shell, and a cylindrical shell. In the former case the radius of
curvature is constant in all directions. This problem was inves-
tigated by the author in a recent paper [2]. In the latter case one
of the principal radii of curvature is infinite and the other constant.
" It appears therefore that this geometric simplicity leads to a
rather straightforward analytical solution. However, the fact
that the curvature varies between zero and a constant as one con-
siders different angular positions--say around the point of a crack
which is aligned prallel to the cylinder axis--more than obviates
the initial geometric simplification and therefore increases the
mathematical complexities considerably. For this reason, Sechler
and Williams [3] suggested an approximate equation, based upon
the behavior of a beam on an elastic foundation, and were able to

obtain a reasonable agreement with the experimental results. In




P
this paper, we investigate this problem in a more sophisticated
manner. |
It is of some practical value to be able to correlate flat
sheet behavior with that of initially curved specimens. In exper-
imental work, for example, considerable time could be saved if
a reliable prediction of curved sheet response behavior could be
made from flat sheet tests. For this reason an exploratory study
was undertaken to assess analytically how the two problems
might be related. Although it is recognized that elastic analysis
is not directly applicable to fracture prediction because of the
plastic flow near the crack tip, considerable information can be

obtained.




IT GENERALITIES

In the following, we consider bending and stretching of thin
shells,as described by traditional two-dimensional linear theory,
with the additional assumption of shallowness. In speaking of the
formulation of two-dimensional differential equations, we mean the
transition from the exact-three-dimensional elasticity problem to
that of two-dimensional approximate formulation, which is approp-
riate in view of the ''thinness'' of the shell. In this paper, we limit
ourselves to isotropic and homogeneous shallow segments of elastic
cylindfical shells of constant thickness. It is also assumed that
the shell is subjected to small deformations and strains so that the
stress-strain relations may be established through Hooke's law.

The basic variables in the theory of shallow shells are the
displacement component W(X,Y) in the direction of an axis Z, and
a stress function F(X,Y) which represents the étress resultants
tangent to the middle surface of the shell. Following Marguerre [4]
the coupled differential equations governing W and F, with X and Y

as rectangular coordinates of the base plane (see fig. 1), are given

by:
Eh 0°W . 4
ax
b viw L 8°F _ q(X,Y) e
RD 5,2 D

The usual bending moment components M_, M_, M are
X y Xy

defined in terms of the displacement function W as:
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M =3D[2= + w (2.3)
=~ [ax2 ayz]
B 2

M = D[i—2+ ,,_"3_2 w (2. 4)
y Y X
- 9%wW

M, = D (1) 5557 (2.5)

Similarly, the membrane forces are defined in terms of the stress

function F as:

2
N =a_1; (2.6)
X 8y
2
N =E2_ (2.7)
Y ax
2
_9°F
ny T T 9XoY (2.8)

In view of (2.3)-(2.8) the bending stress components are

2 2
EZ [8°W_, @ w]
o/ = - + v (2.9)
Xy (I_VZ) i 0X 7 3Y2,
- o2 2
- =-EZZ avngyavzv] (2.10)
b (1-»“) L 8y dX
2
W
Txy_b 2GZ XY (2.11)
Similarly, the extensional stress components are
2
o =T1{ a_r; (2.12)
*e 9Y
2
. :}_112_.12‘2. (2.13)
Ve X
2
;. =-1 97F (2.14)
XYe h axay
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IIT CRACKED CYLINDRICAL SHELL

1. Formulation of the Problem

Consider a portion of a thin, shallow cylindrical shell of

constant thickness h and subjected to internal pressure q(X,Y).

‘The material of the shell is assumed to be homogeneous and iso-

tropic, and parallel to the axis there exists a cut of length 2c. The
coupled differential equations governing the bending deflection
W(X,Y) and membrane stress function F(X,Y) are given by (2.1)
and (2.2). It is convenient at this point to introduce dimensionless

coordinates, namely

oM

— Y
X = —_
c

. O N
e (Téf—lfﬂsﬂé‘:% (3-1)

e ———

which change the homogeneous parts of (2.1) and (2. 2) to

Ehc? 8%W _ o4 /
—22C + VF =0 (3.2)

R sz

2 .2 \/
4 c® °F _
-}— Vw+—RD -—Z-ax =0

(3.3)

As to boundary conditions, one must require that the normal moment,
equivalent vertical shear, and normal and tangential in-plane stresses
vanish along the crack. However, suppose that one has already fou.n<i>ﬂ=
a particular solution satisfying (3.2) and (3. 3), but that there is a
residual normal moment My’ equivalent vertical shear Vy’ normal

in-plane stress N_, and in-plane tangential stress N__, along the
y Xy

* See particular solution, SECTIONV.




crack Ixld1, of the form:

For simplicity, we take m

more we divide the problem into two parts:

Symmetrical : where vy = to =0

Antisymmetrical: where m_=n_ = 0

2. Mathematical Statement of the Problem

(3. 4)
(3. 5)
(3. 6)

(3.7)

*
, v ,n ,t to be constants and further-
o o’ o

Assuming therefore that a particular solution has been found,

we need to find now two functions of the dimensionless coordinates

(x,v), W(x,y) and F(x,y), such that they satisfy the partial differen-

tial equations (3.2) and (3. 3) and the following boundary conditions.

Aty = 0 and Ix| 1L

2 2 Dm
_ D |8°W °w | _ ™o
My(X,O) —:2-[ 2+ 14 2:|— 2

oy ox ¢

3 3 v
V. (x,0) = - 2% 3_?_*_(2_]})32\'1\[ -D-3%
y c oy 9x 9y o

For non-constants see discussion on page 18.

(3.8)

(3.9)
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N (x,0) =2 25 - ¢ C(3.10)
y C ox (e
2 t
_ 1 9"F _ "o
ny(x’ 0) = - 2 9xdy 2 (3.11)
o c

Next, we must satisfy the continuity requirements, i.e., for y=0

and [x| >1
[ o $ o .
yi—= U |9y y
S} n
uim |2 (&%) - 2_F) =0 (3.13)
lyl-0 | 9y oy

(n=0,1, 2, 3.)

Furthermore, because we are limiting ourselves to a large
radius of curvature for this shallow shell, i.e., small deviations
from a flat sheet, we can apply certain boundary conditions at infinity
even though we know physically that the stresses and displacements
far away from the crack are finite. Therefore, to avoid infinite
stresses and infinite displacemgnts we must require that the dis-
placement function W and the stress function F with their first de-
rivatives be finite far away from the crack. These restrictions
simplify the mathematical complexities of the problem considerably,
and correspond to the usual expectations of the St. Venant Principle.
It should be pointed out that the boundary conditions at infinity are
not geometrically feasible. However if the crack is small compared

to the dimensions of the shell, the approximation is good.




IV SOLUTION OF THE SYMMETRIC PART

1. Integral Representations of the Solution

We next construct the following representations which have

the proper symmetrical behavior with respect to x,

(0]
Wix,y) :t[ {Ple Vs(s- )‘G)IYI+P -Vs(siha) Iyl
(4.1)
O
P, e -Vs(s- \B) ly|+P -Vs(st\g) lyl}cosxsds
Qo
F(x,y ) = }iw/Eh_Df{Ple_'s(s_)\a) ly|+Pze’“s(s+°M yl _

o (4. 2)
- P3e‘VS(S'M35 lyl _P4e-VS(s+)\B)|y|}cosxsds

where the Pi , (i=1,2,3,4),are arbitrary functions of s to be deter-
mined from the boundary conditions, and the * signs refer to y> 0
and y< 0 respectively.

2. The Boundary and Continuity Conditions in Terms of the Integral
Representations

Assuming that we can differentiate under the integral sign,
formally substituting (4.1) and (4. 2) into (3. 8)-(3.11) yields respec-
tively:

lhm Q {PIS(vOs—a)\)e—\/S(s'a)‘)IYI+st(vos+a)\)e-\/s(s+a)\)|y| .
v |—0

P3s(v0s-(3)\)e -Vs(s-BM) Iyl p 45(v sTABle -V s(st)f) IV'} 4,3)

. cosxsds =+ m_; Ixl<1




+ ras

o

llirn / {s(vos+a)\)Pl\/s(s—a)\) e s(s-ak lyl+s(vOs-a)\)\/s(s+o.>\)

[e]

P e_vs(s+a)\)lyl+s(vos+ﬁ)\)\/s(Tﬁ)\) P, e V8(s-BX)

2 (4. 4)

+s(vos-B)\) Vs(stpBX\) e—.s(s+ﬁ)\) Iy'}cosxsds =0; Ixl <1

11rn- ivEnD / ~Vs(s- a)\)lyl ‘VS(S+0.)\)IYI

| lyl=0
‘ (4.5)
_P3e_mlyl_P4e-VS(s+ﬁ)\)|yl} 2

S cosxsds = no; Ixl<1

ly =0

[0e)
%hm 1VEhD/ {V s(s-al\) P ~Vs(s-a) ‘Y‘-h/s( stal)
o

Pz e-\/s(s+a)\)lyl_m P3e—\/s(s—)\[3 ly | (4. 6)

-Vs(st+B\) P4 e—.s(s+ﬁ)\)lyl }s sinxsds = 0; Ix| <1 1/

where again the + signs refer to y > 0 and y < 0 respectively. A
sufficient condition for eqs. (4.4) and (4. 6) to be satisfied is to set

the integrands equal to zero. This leads to

v s
Vs(s-\B) p3 = - (-FOX_ - %)[Vs(s—a)\) Pl + Vs(stak) PZ]

(4.7)
- % [w/s(s—a)\) Pl—\/s(s+a)\) PZ] ﬁ
Vs(st xpjp4=(;‘;\s+ %)[\/s(s—a)\) Pl+w/s(s+u.)\) Pz]
| (4.8)

Za_ﬁ [\/s s-a\) P -\/s(s+a)\ P]
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Further it may easily be shown that the continuity conditions lead to:

[0e) .
f {Vs(s—a)\) Pl + vVs(stal) PZ} cosxsds = 0; Ix| >1 (4.9a)
o

o
/ {vos2 (Vs(s-a\) Pl+ vs(stal) PZ)
o (4.10a)

+ axs(Vs(s-al\) P1 - VYs(stak) PZ)}cosxsds =0; Ixl>1

which are satisfied if we consider the following combinations to

vanish

(o)

/ {\/s(s—a)\) P, + Vs(sta\) P, + Esl
o (4.9b)
. (Vs(s-a\) P1 - Vs(stak\) PZ)} cosxsds = 0; Ix|>1

S

00

/ (VEleam) P, + Y3ToTan) P, - ok
o 7 (4.10b)
. (Vs(s-a)\} P1 - \/s(s+a)\)}cosxsds =0; Ixl>1

Therefore we have reduced our problem to solving the dual integral
equations (4.3), (4.5), (4.9b), (4.10b) for the unknown functions

P1 (s) and PZ(s).

3. Reduction to Single Integral Equations

Because we are unable to solve dual integral equations of
the type discussed in the previous section, therefore we will reduce

the problem to singular integral equations. Let for Ixl <landy=0

o0
ul(x) =f{Vs(s—a)\)Pl + vs(stak\) P2+—q'§)3 (\/s(s—a)\)Pl-\/s(s+o.X))PZ}cosxsds
o

(4.11)




217 =
oo

uz(x) =/{Vs(s-a.)\) P, + Vs(stal) P, - —oé-)\ (w/s(s—a)\)Pl—w/s(s+ak)PZ)}cosxsds

[¢]

(4.12)

which by Fourier Inversion gives:

Vs(s-aNP +Vs(staN)P, + 2 (V5(5-an)P, -Va(sTaN)P.,)
1 2 s 1 2

(4.13)
/Jul (§) cos&sdE

(0]

3y

\/s(s-ak)Pl + Vs(stal) P2 - as_k (Vs(s-al) Pl—x/s(s+aA)P2)

1 (4.14)
= %juz(é) cosfsd§
o
And hence
1 ! S
P1 = s iul + W+ Uyt oy uzzcosgsdg (4.15)
o 1
1 1 SU1 s
P,=ce ——— u,tu, - ——+ —u, {cosésdE (4.16)
2 27 m [3 1 2 al  aX Zg ,
1
P =—(VOS -l—)—-l— (u; + u,) coséd§
S B 2 W\/-S(S—-BT) 1 2
1 | (4.17)
- (u,-u,) cosésdé
2BAT m/ 1 72
P =(VOS +1—)l——1—o- (u,tu,) cosésdg
4 ﬁk 2" m / 1 2 (4.18)
+ o 1 (u,-u,) cosésdéE
2B /———S(S+BM[1 2

where the functions ul(g) and uz(g) due to the symmetry of the prob-
lem, are even. Formally substituting (4.15)-(4.18) into (4.3) and

(4.5) we find after changing the order of integration and rearranging
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_— iVEhD * *
N =4 /{L1u1+ L, uz}dg (4.19)
1

M, =42 /{ul(g) LI+ Lyu,} dt (4. 20)
1

” s 2 -Vs(s-an) lyl g2 o” s(stan) ly |
ioffo STl
ra) g s(s-al) @ s(stal)
+-(igi ) l).ii o (s-28) lyl . s3 e-VS(s—ﬁhjlyl ,
N CR) RN FR Y
—(vos+}q§3 e—Vs(s+X6)|y| ) s3 e—Vs(s+ﬁA)|y|} oulinds
N T B R (I CE oY
o 2 -Vs(s-an)lyl 2 -Vs(stan)lyl
* s,s e
L, = {(1- %)%— = + [t == +
s o Vs(s-al) % Vs(stal)
'+-(vos —10.23 e—VS(s—Bx)ly| ) S3 e—Vs(s—BA)lyl i 23]
Pa & 2 s(s-BN) RN A ROy
vV s 2 e—V—F;S&ﬂlyl

%r }cosgsds

Vs(stAB
o X s(sv_-ad) . e—VS(s—aA)lyl s(sv_+al) s oV (stan) lyl
L= {—— &) b -2y
b Vs(s-al) @ Vs (staX)
s(m%—kﬁ) vs g 5 e-VS@-BKHyl
= ( 5+ ) (4.23)
2 BA 2 2BA m

s(svd+kﬁ) Vs < e-VS(s+ﬁA)|y|

=15t ) e

2 B 2N T et

1 S
- byt 757 2B

} cosl{ sds




5=

w« X(s(sv_-al) -Vs(s-ad)lyl s(v_stan) -Vs(sta) lyl
L4E~/ —— -3¢ P (42 E
A o Vs(s-al) @ Vs(stal)

) s(vos-kﬁ)<vos 1 5 >e—\/s(s-[3)\)lyl
2 BA 2 A \/-sm
(4. 24)

+

s(v_s+p2) vos o Vs(stpN) Iy
(ﬁ)\ 2 2(3?()

+ = 2 g cos{s ds
2 Va(atpA)

The integrations in (4.21)-(4.24) may be carried out explicitly by making

. . %
use of the Fourier cosine transforms

P As(s-an)lyl ~Vs(stan) lyl
j[(x: / j Sieaiily + & it g coslsds = cos —%— (BAP) (4. 25)
o Vs(s-al) Vs(stal)

P Vs(s-an) lyl -Vs(stad)lyl
3e SraAlly _ & sihiniil ;singsds=sin aZC, (BAP) (4. 26)

Vs(s-al) Vs(stal)
and similar results obtained by differentiating them with respect to x
and |yl (see Appendix). In these formulas pZ = 1_:,2 + lylz, and Kn
denotes the modified Bessel function of the third kind of order n.

The expressions (4.21)-(4.24) can be written in the form

F3
The equations (4.25) and (4. 26) are proven in the Appendix.
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*
%{—{Li(g, ly 1,0} and in the limit as |yl —~ 0,N; and M become

- 1
. -iVERD d
lél]rf»o NY = - = {ulLl +u,L, }dg (4.27)

(4.28)

where the integrals are understood to be of Cauchy principal value

E

and Li lim Li’
lyl—0

If in the limit lyl — 0 we replace NY’MY
by n and m respectively, integrate with respect

to x, then we find

that they must satisfy the integral equations

_
f fu (E)L + uy(6)L,y fag = ——— x;  Ixl<1 (4.29)
=1 ivEhD
1 —
[ fnn, s uy@on, s =@ x s Ixl < (4.30)
-1
The kernels Ll’ LZ’ L L4 have singularities of the order L E -x—l—g
and their behavior for small arguments is:
v -6 .
-y + et [ o S sy praante=honnan Mkl
(4. 31)

4 3 o
*_OQ%&—QSInXBPg”‘F-m (%= §—re&a(h¥ ),+,Zéoﬁﬁ$3)‘X
- XX (%% 30}.20 : : ‘
+62f0vn??? T —6 (1330 ) " b 260

g)[
6

=l 16 - 2T+ 5y (7+zn19£_5‘)_67+1 Alx —gl)]

4
(4.32)
O(A4(x—§)3 In Alx-£ )

ﬂzﬁi ¢83 (1-vg) — Ao (1-70)%

20720
+ (1230t \léov“B 2 _’\,_.gfr’l+ 70@«,_}’__—(\ (5
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2
(4-v_)v_ v -6 10v7-13v -6 .
Ly = z(xo_g) 5 B >;.6( x-£) [ % (v )t 2mi +<_°_2_°_>(7_+£n Aalz—gl)
11v -6

(4.33)
- — L = )\le—gl ]+ O()\4(x §)3£n Alx-E1) /

—“_(’i'——l ("“r ‘5‘60”)'-*%0) (l2£°¢‘+z 300V - (coo)m’+(—;zc°v~+\+3oy— (60 &ob\(»g» »

39F20 v, v -6 6+v_ +{1330V; - '5"0)9»\(‘»\&_?;"}
Ly = g) o, B Alé &)[ O )Ly ) 2+ (—-2) (vt an 2B12E]) i
(4.34)

10v 2—23v +6
o o
2

3
() (1=2or; - ?60-683%7’)-*('@00 126057 230075 ) + ('S“ +1260 152 223017} 20
30720 |6 ~70 ‘)/&,\m +

We require that the solutions ul(x) 2(x) be HB der confinuous 4- + -

+

) (Y+ fznl‘i";_'g_') & O e-2"0 w % lx-ED

for some positive Hblder indices M and P for all xinthe closedinterval [-1,1].
Thus in particular ul(x), U.Z(x) are to be bounded near the ends of the crack.

The problem of obtaining a solution to the coupled integral
equations (4.29) and (4. 30) can be reduced to the problem of solving
two coupled Fredholm integral equations with bounded kernels. These

details are discussed in reference [2].

4. Solution of Integral Equations for Small A.

Because of the complicated nature of the kernels Li (i=1,2,3,4),
a closed form solution of the unknown functions ul(x) and uz(x) is ex-
tremely difficult. On the other hand, for most practical applications

the parameter ) assumessmall values as follows from the definition of

A, namely

Y 1/2
M2(-v) (o/hy = $h2a-v%) (¢/R) (R/h)

VR/h

P
1]

It is clear that A is small for large ratios of R/h and small crack
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lengths. As a practical matter, if we consider crack length less

27R
10

corresponding upper bound for A can be obtained, namely A {20.

than one tenth of the periphery, i.e. 2c(

R 3
, andforH<10 a

Thus the range of X becomes 0 { A { 20 and for most practical cases
is between 0 and 2, depending upon the size of the crack.

Following reference [ 2 ] we assume solutions of the form

u, () = V1-¢2 —Al + 2%A,0-8%) + ] s lElq (4. 35)
ap(®) =N1-¢2 [B, + 2%B,0-6% + ... 5 1€ (4.36)

where the coefficients Al’ AZ’ o e Bl’ BZ’ ... can be functions of X
but not of §.

Substituting (4.35) and (4. 36) into (4.29) and (4. 30) and making
use of the integrals given in the Appendix we obtain two algebraic
equations with four unknowns — good up to O(hz). Next we equate
coefficients, in particular we first require the coefficients of the

x3 terms to vanish which gives:

1+v0 l—vo 0‘2

( 5 )AZ—(——Z—) B, =55 (5v_-6) (A+B,) (4.37)
4-v 2 (10vZ-2v -12 10v%-22v +12

(—2) v (A+B,) = o o " A 4_° ©° 'p
5—) v, (A+B5) =573 z 1 73 1

(4.38)

Hence we are left with two equations and two unknowns, namely:

1+v0 aZJLZ 37vo-42 57 ra 2
Al; > + 53 —t 2+ 5V, (Y+en Z=)-6(7+Ln 5)

l-vO aZAZ 37v0—42 5i ra )\]
+ 1313- >— t =33 [ 5 ===1 5vo(‘Y+£n—8—-)—6('y+£n—8—) (4.39)
-1

+o% gy = =2

iYEhD
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Similarly
4—v0 (32)\2 7v0(l+v0) 9v0—8 10v§—l3v0—6
A1 3(——)2 v, + 35 [ 5 + > + > + 27i
11v_-6 e 10v%-13v -6 o
t— (Y+in £5) + 5 (v+in =
2 (4. 40)
4—vo ‘32>L2 7v0(1-vo) 8—v0 10v0—23v0+6
+B1{( > )v0+ 33 [— 5 + == > + 27i
2
6+v 10v™-13v +6

+ (5 (v+en sﬁ” ©—2° (vttn %)]} +O(A.4ln)\_)=<;mo

And solving for A1 and B1 we find:

+

' 2
a - -0 . 77)\2 §+ 12v0—5vo -8 . p2)\2 ) 7vo(1-vo) 8—v0
1~ 16 I

iVERD 4 4(4—vo)vO 6(4—vo)vo 6 2
10v02—23v0+6 6+vo A8 10v0—23v0+6 R
(4. 41)
m (1-v )
o o

2 12v -5v~-8 2.2 37v_-42 .
- 9% o ), T §+ ° _© _oA g -57r1+5v(+1nM)
@V v 16 |2" 4(d-v v 16(0-v) 6 7] o\Y 8
O ©° o o o

- 6(y+in %)] }+ O()L4ln7l)

- ~
- n_ {H w12[5+12"o 5v0 8] lez [7v0(1+v0) 9vo 8

= + +
iVERD 16 |4 4(4—v0)v0 16(4—Vo)v0 6 2
10v2—13v -6 1lv -6 1Ov2—l3v -6

+ o o le)

. 2 X
> + 27+ + (y+in §ﬁ_)+ > 2 (y+in 8—°)]

(4.42)

2
) mo(l+vo) - FAZ 5, 121/0—5vO -8 . QZAZ 37vo-42 , 5ri, 6 | +1nﬁ)
v v 6" |27 4@ v I6(Tv_) 6 Z oY 8

~6(y+n %)]}+ o }enn)
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It should be pointed out that if coefficients Al’ Bl of higher accuracy
are desired, say up to order Azn, then it is necessary to solve aﬁ

n x n algebraic system. In effect, this is a method of successive
approximations. Reference [ 2 ] shows that for X< A* the power

series solutions of the form

N

oMig) =V1-¢ EOAnH 2R a-g%)" (4.43)
n=
N

aNig) =v1-¢ ZOBnﬂ A -g5)° (4.44)
n=

in the limit as N —oo, will converge to the exact solutions ul(g) and

u, (&) of the integral equations (4.29) and (4.30). However since most

2
particular solutions will give us a non-uniform residual moment and
normal membrane stress along the crack, it is only natural to ask
how the solution changes. Suppose, for Ix1 {1, we expand m and n_
in the form Z anxzn (even powers because of the symmetry of the

n
prob}em), then our previous method of solution will still be applicable.
And as can easily be seen from equations (4.29) and (4. 30) although
the coefficients A ,B_ in this case may change, the character of the
solution will still remain the same. Finally, because we desire to
focus our attention upon the singular stresses around the neighbor-

hood of the crack point, we need only to compute the coefficients A1

and Bl .

5. Determination of W and F

In view of equations (4. 11), (4.12), (4.35), (4. 36) and the

relation
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_ -1 K-3
- va(2a) Mr(wd)] (%-x%) 7 0<x<a
f s M7 (as)cosxsds= ; Rep> -1
5 B
0 ’ ; a<x< oo
(4.45)
which can be found on page 44 of [5] we have:
VS(s—aX)Pl + Vs(stai) P‘2 + % (Vs(s-an) P1
7 (s) )\ZAZ 7,(s) (4. 46)
-Vs(staX) P2)= Al = + 3 52 + e
Vs(s-aX) P1 + Vs(stal) P2 - 9’5}- (Vs(s-aX) Pl
2 (4.47)

: Ji(s) A"B, J,(s)
-Vs(stad) P,) = B t— s—+ ..

S
S

where Al and B1 are given by (4. 4l) and (4. 42) respectively. From

this we find that
(A1+B1) Jl(s) (Al-Bl) Jl(s)

4P (s) = + + ... (4. 48)
PO * VsGran

(A1+ Bl) Jl(s) (Al— Bl) Jl(s)
4P, (s) = — - . (4. 49)
Vs(stal) Vs(stal)

and
v, s A1+Bl Jl(s)
\ S(S_A‘ﬁs P3(S) = = (BA - %) ( 2 ) S
A -B, J. (s)
a 171 1
_73( 5 )aA + ... (4.50)

vV s A+B, J (s) A -B. J.(s)

VSTsFXB) Pyls) = (o + 1) Tt g At .. (4.51)




-20-

Therefore, a substitution of the above relations into (4.1) and

(4.2) will determine the bending deflection W and membrane stress

function F.

6. Determination of the Singular Stresses

In view of equations (4.1), (4.2), (4.48)-(4.51), the bending
and extensional stresses defined by (2.9)-(2.14) can be expressed in
integral forms which may then be evaluated using the relations
(11-14) of the Appendix. Without going into the details we list below
the results.

Bending Stresses: On the surface Z =+ %—

~

- P
- =@’ Eh > 10 <% cos —g—+ %cos 52—0>+ O(Eo) (4.52)
b 2(1tv)c” VZe
r 5
o Ehz , 10 (11:;51» Cos% N 14—v i EZQ)J, 0(e®) (4.53)
¥b 2(1-v7)c™ V2e K
. 2 Gh I~310 7+ v . 1-v 56 o
- =& > y sini+—-4—Sin—2+O(6 ) (4. 54)
= (1-v)c v2e D
("
where
~ < Y -0 7\2 42-37v0
P..=¢5 (A+B.) =
S 10 3 11 32(4-v ){ 3
EhD o (4.55)

X +m0 12v0—5v0- 8 7r7\2 4
+ (12-10v ) (r+ ing 1 W 1+ 4(4"V0)Vo TSl O(Xx"Ln))

Note because of the Kirchhoff boundary conditions, the bending shear
stress does not vanish in the free edge. For the flat sheet this prob-

lem was discussed by Knowles and Wang [ 6 ] .
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Similarly we find through the thickness

Extensional Stresses:

P
. = _Zio_ (% ——_— g+ %cos 220—) + O(€) (4.56)
*e hc“VZe
520 5 1 56 o
N (Zcosg-zcosT)wL O(€®) (4.57)
Ye hc v2e
P
s == -22—0 (% sin—g— - —‘li sin %’L) + O(eo) (4.58)
XYe hc™vV2€

where

™
|

1+vo l-vo
ZO*iVEhD (2 )Al-(2 )Bl

2 m 2 37v -42
B 57\ o X YvEhD o
‘“o{“ 64 }' 32 ([E-v )v { 3 (4.59)
o O
A 4
+ (10v0-12) (Y+4n g)} + O(L" £n))

It is apparent from the above equations that there exists an interaction
between bending and stretching, except that in the limit as X — 0 the
stresses of a flat sheet are recovered and coincide with those obtained
previously for bending [ 7 ] and extension [ 8 ] . Thus locally the
stresses in a shell are expressed in terms of the stresées in a flat

sheet.

7. Combined Stresses

In general, the combined stresses will depend upon the con-
tributions of the particular solutions reflecting the magnitude and

distribution of the applied normal pressure. On the other hand, the
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singular part of the solution, that is, the terms producing infinite
elastic stresses at the crack tip, will depend only upon the local
stresses existing along the locus of the crack before it is cut. These
of course are precisely the stresses which must be removed or can-
celled by the particular solutions described above in order to obtain
the stress free edges as required physically., Hence the distribution
of q(x,y) does not — to the first order — affect the local character of

the stresses at the crack point.
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V A PARTICULAR SOLUTION
As an illustration of how the local solution may be combined
in a particular case, consider a shallow cylindrical shell containing

an axial crack of length 2c (see fig. 2). The shell is subjected to a

uniform internal pressure q with an axial extension Nx = S%F_{ 3 MY =0,
far away from the crack. For this problem, the solution of the
coupled-extension-bending equations for the uncracked shell is:
q R”
Wo(x,y) = 5 (5.1)
F(x,y) = qojc y* (5.2)

Hence along 6 = 0, 7, the bending and extensional shear vanish by
symmetry, and the circumferential bending and stretching stresses

are

Mm{F) = o (5. 3)
66

NP L REL g (5. 4)
69 C2 3x2 4o °

Because the homogeneous solution must negate these values from

the particular solution, therefore we choose

%o
> = qOR {54 5)
od
Dmo
5 =0 (5.6)
c

Returning now to the stresses along the crack prolongation, for
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example the normal stresses UYtotal and TXiotal’ one finds using
(4.53) and (4.57) that for Eb =0
Ee Ay 2
o (€,0) = {1+(0.76+ 0.30£n-§))\ } (5.7)
Ytotal V2€
y=t
E'b=0
and
v A\
o (€,0) ~ —= ;1+(o.z4-o.06 ﬂng))\z} (5.8)
total v2E€
_b=o
where
m
T, = 6D _o _ ""applied bending"'
b Z 2
h™ c
o, = —2 = ""applied stretching"'
c
For A= 0.98 equaﬁons(5.7)and(5.8)reduceto:
Ee
c (€,0) o e d11E | (5.9)
Yiotal v2€
pes
o, =0
A=0.98 .Ee
¢ (€,0) ~ {1.37} (5.10)
%total VZE _
1
ves
%,=0
A=0.98
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And for our particular example, we can associate

o, = 0 (5.11)
Fe =q, (R/h) (5.12)
Hence
0.79
T (€,0) =~ (R/h) (5.13)
total Ve qo
and
0.97
o (€,0) = (R/h) (5.14)
Xtotal VE 4o

where, based on the Kirchhoff theory, the stresses o and o have
the same sign but differ in magnitude. This difference is because
in a cylindrical shell the curvature varies between zero and a con-
stant as one considers different angular positions. On the other
hand, for a spherical shell [ 2 ] and for a flat plate [6 ] , because
the curvature remains constant in all directions, we obtain a

""hydrostatic tension'' stress field.
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VI GRIFFITH'S THEORY OF FRACTURE FOR CYLINDRICAL PANELS

As is well known in fracture mechanics, the prediction of
failure in the presence of sharp discontinuities is a very complicated
problem. Some work has been done on flat sheets, based on the
brittle fracture theory of A. A, Griffith [ 9 ]. His hypothesis is
that the total energy of a cracked system subjected to loading re-
mains constant as the crack extends an infinitesimal distance. It
should of course be recognized that this is a necessary condition
for failure but not sufficient.

Griffith applied his criterion to an infinite, isotropic plate
containing a flat, sharp-ended crack of length 2c and under the action
of external loading. A similar criterion for bending is not available
for (i) there exists no exact solution and (ii) the upper fibers are
under extension while the lower fibers are under compression. In
view of the above the author in a previous paper [ 2] has developed
a similar, but approximate, criterion for initially curved sheets
based upon only the singular terms of the stresses and furthermore
the stresses were integrated through the thickness of the shell°
Without going into the det:a,ils>=< we list below the derived local frac-
ture criterion for an axial cracked cylindrical panel

2
5vo —12vo+ 8 7r7x2 2

E-v v 32 | b
O O

2
33+6v-Tv 1+5v [1 ) £

6(3+v)° 7Y ]

¥ See reference [2].
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& 1+ 5v [1+ 57r)\2:l —2+ 30—3v-7v2 1+5v
| 201+ v) 32 (3+v)(9-7v) léﬁm (3+v)
4?.-371/O wl.2— —
o | ———— + (12-10v )(yt tn F)| X" 0o _ @ (6.1)
3 © 8 E b Cont'd.

_ 16Gy* - (0‘*)2
T C

It should be pointed out that equation (6.1) is normalized such that

for x— 0 and Eb = 0 we recover the equivalent plate fracture criterion
T

=7 = =
fox cry = &, and . =3 namely

1t+5v —‘_“—_2= 16Gy (6.2)

In the special case where v = —;— equation (6.1) reduces to

o, 2 T, T
0.21(1-0.100%)(—2) + (1+0.49 2% (

o

3 : o,
) +(0.18+0.11 £n2) 22 )
s o

a Joo!

(6.3)
ro¥inn) = 1

This is of the same character as the one obtained for a cracked

spherical shell [ 2 ] namely

o, 2 g 2
0.21 (1+ 0.122%) (-2) + (1+0.590%) (-2)
o a

o (6. 4)
g g

-(0.24 + 0.07 £n N*E) (2rotenn) =1
g g

*
See reference [10]
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Notice that in (6. 3) the coefficient of Eb is less than one while in (6.4)
greater than one. Plots of the two equations are given in figures (3)
and (4) respectively. Apparently this variation is due to the different
types of curvature. In the spherical shell for example, the curvature
remains constant in all directions, while in the cylindrical shell it
varies between zero and a constant as one considers different angular
positions. For this reason, the author conjectures that the correct
trend of the curves is that of figure (4), and that if stresses with
higher order terms were included for the cylinder the curves will

correct themselves to give the same trend. Be this as it may, for

our particular example Fb = 0, hence equation (6.3) reduces to:
2 -Eez 4
1+ 0.49)7) (—;) + O(XA"En)) =1 (6.5)
o
or
-, / 2
o q.R/h '
%) =<f* )51—0.49A2 (6.6)
T (12

which gives an expression for the maximum internal pressure that
the shell can withstand before fracture. This is plotted in figure (5).
From equation (6.5) we can also derive an expression for the ratio
of the critical crack length of a cylindrical shell to the critical crack
length of a plate, namely

ZS) ~ (1 - 0.492%)
lp cr o

(v )21 i
= plate (6.7)
(o-e)cyl. shell

(

This ratio is less than 1 for all A< 1.4. We conjecture that for A>1.4

the same character will be preserved, but higher orders of A would
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be required to verify this point. The same type of results Were- ob-
tained experimentally by Sechler and Williams [ 3 ] for pressurized
monocoque cylinders. Finally, the spherical shell gives also
similar results for A< 7, which indicates that the symmetry of

the curvature speeds up the convergence of the solution.
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VII CONCLUSIONS
As in the case of a spherical shell, the
(i) stresses are proportional to 1/veE
(ii) stresses have the same angular distribution as that of
flat plate
(iii) stress intensity factors are functions of R and in the
limit as R — oo we recover the flat plate expressions
(iv) stresses include interaction terms for bending and
stretching

A typical term is

o-shell
0-plate

2
wl® Lo+ b it S 3 0 (y) (7.1)
< m) R R2

where the expression in parentheses is a positive quantity. From
this and from the spherical shell we conjecture that the general
effect of initial curvature, in reference to that of a flat sheet, is
to increase the stress in the neighborhood of the crack point.
Furthermore, it is of some practical value to be able to correlate
flat sheet behavior with that of initially curved specimens. In ex-
perimental work on brittle fracture for example, considerable time
might be saved since by (7.1) we would expect to predict the response
behavior of curved sheets from flat sheet tests.

It is well known that large thin-walled pressure vessels re-
semble balloons and like balloons are subject to puncture and explosive

loss. For any given material, under a specified stress field due to
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internal pressure, there will be a crack length in the material which
will be self propagating. Crack lengths less than the critical value
will cause leakage but not destruction. However, if the critical
length is ever reached, either by penetration or by the growth of a
small fatigue crack, the explosion and complete loss of the structure
occurs. This critical crack length, using Griffith's criterion, was
shown to depend upon the stress field, the radius and thickness of
the vessel, as well as the material itself (see eq. 6.1). We were
also able to obtain a relation for the ratio critical crack length of
a cylindrical shell over critical crack length of a flat sheet (see
eq. 6.7). In general for a spherical and cylindrical curvature this
ratio is less than unity, which again indicates clearly that a cracked
initially curved shell is weaker than a cracked flat sheet subjected
to the same loading. Similar results were obtained experimentally
by Sechler and Williams [ 3 ] for pressurized monocoque cylinders.
In conclusion it must be emphasized that fhe classical bend-
ing theory has been used in deducing the foregoing results. Hence it
is inherent that only the Kirchhoff equivalent shear free condition is
satisfied along the crack, and not the vanishing of both individual
shearing stresses. While outside the local region the stress distri-
bution should be accurate, one might expect the same type of dis-
crepancy to exist near the crack point as that found by Knowles and
Wang in comparing Kirchhoff and Reissner bending results for the
flat plate case. In this case the order of the stress singularity re-
mained unchanged but the circumferential distribution around the

crack changed so as to be precisely the same as that due to solely
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extensional loading. Pending further investigation of this effect for
initially curved plates, one is tempted to conjecture that the bending

amplitude and angular distribution would be the same as that of

stretching.
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APPENDIX

1. Table of F. C. Transforms:

We list below the following integrals which are useful for

the evaluation of the kernels Ll’ LZ’ L3, L
[e's)
f d)l cos ¢{sds = 2 cos —E—A—L (LE—) (1)
(@)
o)
; A
_[ P, singsds =D(Zs1n %f_ Ko (‘BTp.-) (2)
[os)
—-é—f s & sin¢sds = %A s1nﬁ$-— Ko (%E) - %g cos
(o)
£o 2.2 2.2.2 2
2
+%fsd>zsing‘sds=[°'2 + alzf]. ak{K(BAP)
: 4
o P
(4)

whgre we have defined

e-VS(S-aX)lyl e-\/sis-l-ak“yl
+

$_ =

‘ 1 Vs(s-a)) Vs(stan)

5 - e—y/s(s-a)t“yl e—w/sis+a)tﬂyl
2 Vs(s-al) Vs(staX)

To evaluate (1) and (2) consider

o
e—w/s(s—aki ly

I= e 1B g
o Vs(s-al)




_ ioélc 0 J EZ_aZAZ lv |
I=n / - . RIPT’
: 2 alrl
-(D E 4
_ iak{_‘
= 2e z K (—-—BB% )

2. Expansions for Small A

- 127& (v+ In Lﬁl@_‘} o tnn))  (5)

B 50(3)\357’( bon p}\z) & olg)\ﬂsé
Boi2 49 .

2.2
—__]é__iég)‘__(,_('wzn?_‘_@‘l_l_ﬂ)

s<I>’ sm(sds} =

(0]
lim {- -é—f sin {sds
[y [—0

oI {
yl—=0
44 (6)
_ 35 paztz3 !,M@_Lz.)+7 B2z,
; (K+ 4- 4_‘5.3

2.2 et
- _é_%_(_ + o()t4 In)) 28.3

Qo

3.3
lim é/ 2 ® sin(sds =%§ %— i—%—ﬁ -T56— a37L3§,
lyl =0

(v+4n ———xﬁigl )

(7)

, TN 683 _5\°7% . 63 5.5 .3 gAz
ol Lsd N2 BN (y~hE2)

3. Table of Proper and Improper Integrals

Another set of integrals which are used in Chapter IV

2
C.P.V.f VI-¢ 4f = mx (8)
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1 3/2

2
C.P.V./ M) dF = r(3x - x°) (9)
=1 *¢

ey
f\/ (x-£) 4n "“'xf' d =Za+en2 2y I (o)

4. Some Integrals of the Bessel Functions J;(s)

(o'}
-s lyl 1 0 o
J.(s) e ® cosxsds = cos =+ Ofe ) (11)
-o/ ! Ve “
o}
-slyl 0 o
J.(s) e s sinxsds = - sin =+ O(e ) (12)
[ = Var "
(e e)
Iylj s J.(s) e—Slyl cosxsds = 1__ [cosg-—cos 50] 0(e°) (13)
1 2
4V2e

|ylf le(s) e ® lyl sinxsds = - —-— [sin-ze— - sin %Q]_,_ O(e® (14)
4V2e
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FIG.5 - SQUARE ROOT RATIO OF CRITICAL CRACK LENGTHS
IN A CYLINDRICAL SHELL AND A FLAT PLATE,
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