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is much more complicated and leads to slowly convergent or even 
divergent expressions for the stress resultants. 

2 The circular support's action on the plate is equivalent to 
a line load, and so the discontinuity in the elastic constants cer-
tainly make the deflection function singular at r = a. This is re-
flected in the fact that two different expressions are needed to de-
scribe the deflection function in the region 0 < r < 03 , and that 
the functions wi and w2 are not analytic continuations of each 
other across r = a, even for the uniform plate. 

3 The second equation following (S) is only intended to indi-
cate one convenient way for obtaining Vhv*. If x,y; X\,yi; and 
x-i,y-2 are coordinate systems in the plane with different origins, 
and V2 , V r , and V22 denote Laplace's operators in these coordi-
nate systems, it is clear that 

V 2 ( / + g) = V 2 / + V2!? = Vi 2 / + V-rg 

In addition, it makes 110 difference whether Ai2 and A22 are ex-
pressed in their Cartesian or polar forms, and the equation in 
question follows directly from (5). 

4 That the longer expression gives the shorter can be checked 
using the following intermediate results: 

V2?'2 log r = 4( log r + 1), 

V ! r log r cos 6 = 2 cos 6/r, 

V- log r = 0, 

V2/'2 = 4. 

5 Let us consider the case of the load being inside the circular 
support. For a vanishing rigidity of the exterior in comparison to 
the rigidity of the interior, the interior part deflects as if the ex-
terior part were absent, and w, becomes the deflection function for 
a simply supported plate. The exterior part, however, is forced 
to deflect so as to maintain continuity in the radial slope at 
r = a. Moreover, the radial bending moment at r = a required 
to deflect the exterior part causes only negligible deflections in the 
interior part because of the vastly different rigidities. Thus (28) 
constitutes the solution for the exterior part with the following 
boundary conditions at r = a: (a) Zero deflection, (fc) radial 
slope equal to that of the simply supported interior plate (Reiss-
ner's solution). A similar interpretation can be given to (38). 

The Bending Stress in a Cracked Plate 
on an Elastic Foundation1 

G. C. SIH2 and D. E. SETZER.3 This paper is a valuable addition 
to the existing literature on the analysis of stress distribution near 
a crack point. I t is of importance in the discussion of the re-
maining strength of bodies containing cracks. The authors are 
to be complimented not only for having solved a difficult crack 
problem, but also for indicating a possible relation between the 
solution of an elastically supported flat plate and a plate with 
initial curvature. This information suggests possibilities for 
extending some of the current fracture-mechanics theories to shell-
like structures. 

Upon a detailed examination of the authors' results, it should 
be pointed out that the effect of elastic foundation does not alter 
the qualitative character of the ordinary bending stresses near 
the crack point in an unsupported plate. Specifically, the circum-
ferential stress variation in equations (60) through (62) of the 
paper should be the same as that obtained for the plate without 
an elastic foundation. The foundation modulus only enters into 

1 By D. D. Aug, E. S. Folias, and M. L. Williams, published in the 
J u n e , 1 9 6 3 , i s s u e o f t h e JOURNAL OF APPLIED MECHANICS, v o l . 3 0 , 
TRANS. A S M E , vol. So, Series E , pp. 245-251. 

2 Associate Professor of Mechanics, Lehigh University, Bethlehem, 
Pa. Mem. ASME. 

3 Instructor of Mechanics, Lehigh University, Bethlehem, Pa. 

the problem in the intensity of the local stress field. Because of 
the coordinate system employed in the paper, this conclusion is 
not readily observable. 

After lengthy manipulations, it can be shown that the local 
stress distribution in a cracked plate on an elastic foundation may 
be expressed in polar form as follows: 
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where z is the thickness coordinate measured from the middle 
plane of the plate. The formal appearance of these equations is 
indeed in agreement with that derived in an earlier paper by 
Williams [ l ] 4 for a plate without elastic support. In making 
comparison with equations (60) through (62) of the paper, it 
should be noted that the angle 6, measured from the line of crack 
extension, is the complement of the angle ip. In addition, the real 
constants Ki and K 2 are related to the complex constants P 0 and 
Qo, respectively, by the following expressions 

r„ 2 7 ^ ( 3 + f ) ( l + i)Ghr- n 
A-i = wrr, p » l A ' -

2tt'- / ;(3 + y ) ( l - i)Gh\-
•ft-2 = — ^rp; vo 

l A ' -

(4) 

(5) 

Here, l i t and K2 may be regarded as the crack-tip stress-intensity 
factors [2] for symmetric and skew-symmetric bending-stress 
distributions, respectively. 

From these definitions of K ^ i = 1, 2), the authors' results for 
the two limiting cases of interest may also be rearranged into the 
form previously stated, equations (4) and (5). They are as 
follows: 
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In connection with the Griffith-Irwin theory of fracture, it 
may be stated that the onset of rapid crack extension will corre-
spond to reaching some critical values of the combination of K1 
and Kn for a given material. Presumably, equations (4) and (5) 
may be employed directly in the fracture analysis of plates on 
elastic foundations. 

4 Numbers in brackets designate References at end of discussion. 
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As a specific example, the authors' problem of a cracked 
rectangular strip, subjected to bending moment M* and uniform 
normal loading qo, may be used. Substituting equations (79) 
and (80) of the paper into equations (46) and (56), it is found 
that 

Nre = 

K, = cry*f(\y*/V'2) 

IC2 = 0 
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Comparing equations (8) through (10) with the authors' equa-
tions (117) through (119) of the report [3], i t is observed that the}' 
are indeed identical if 

where <ry* = 6M*/h2. Note that qo does not appear in the solu-
tion of Ki. This result is as expected, since a uniform compres-
sion of the plate on an elastic foundation does not affect the 
singular stress components near the crack point. 

Aside from its importance in fracture theories, equation (6 ) 
may be conveniently used to compute the stresses along the line 
of crack extension. Tor instance, inserting equation (6 ) into 
(2) , it gives 
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This result differs f rom that of equation (83) obtained in the 
paper. I t follows then that b y these considerations equation 
(So) should be of the form 

As a final point of interest, it is worthwhile noting that the 
simultaneous extension-bending stress field in a shallow spherical 
shell with a radial crack follows immediately f rom the observa-
tions made in the earlier part of this discussion. A t the same 
time, the discussers would like to take this opportunity to clarify 
the interpretation of some of the results given b y the authors in a 
previous report [3], which is intimately related to the work in this 
paper. In the report, it was not clear that the shell solution for 
increasingly large curvature tends toward the solution for initially 
flat plates. 

In the introduction to the paper, the effect of initial curvature, 
R, is shown to be qualitatively equivalent to having an elastic 
foundation with modulus k for a flat plate. Hence, the bending 
part of the shell solution is identical to the supported-plate solu-
tion upon recognizing the equivalency relation k = Eh/R2 = 
DX4 . This implies that equations (1) through (3) may also repre-
sent the bending stresses in a shell, where Kt(i = 1, 2) are now 
dependent upon the initial curvature, R. 

Similar results for the membrane part of the problem may be 
observed also. Restricting attention to a small region around 
the crack tip, the Reissner [4] shallow-shell equations show that 
both VJ and F satisfy basically the same type of differential equa-
tion. Moreover, the stress solution given b y equations (1 ) 
through (3) reveals that for small values of r, V4u> = 0, and thus 
F must also behave as the biharmonic function in this vicinity. 
B y specifying the free crack surface conditions of vanishing 
normal and tangential membrane stresses 

b2F a ( 1 diA o, Nr0 = - - — j = 0, = ±7r 
(7) 

the local membrane stresses may be written as5 

+ 0 ( r ' / ! ) (S) 

+ 0 ( r ' / ! ) (9 ) 

Similar to the bending solutions, ki and k2 may be regarded as the 
crack-tip stress-intensity factors for the symmetric and skew-
symmetric portions of the membrane stress field, respectively. 

While the local angular distribution of the extension-bending 
stress field in a spherical shell appears to be identical with those 
obtained b y superimposing the separate extensional and bending 
stress of a flat plate, it must be emphasized that the stress-in-
tensity factors k{(i = 1, 2) and K{(i = 1, 2) for the shell problem 
are interconnected through the loading. More precisely, if a 
plate is initially curved, a stretching load will generally produce 
both types of stress-intensity factors; namety, kt and Kit and 
similarly a bending load will also yield both kt and K(, i.e., the 
curvature causes stretching to introduce bending and vice versa. 

I t is now clear that as the initial curvature of the shell becomes 
increasingly large, the circumferential stress distribution near the 
crack point remains unchanged, while the stress-intensity factors 
kj and K i approach the separate solutions for the initially flat 
plate. 

In closing, the discussers wish to congratulate the authors for 
the excellent piece of analytical work. The results of the paper 
are most useful to those interested in the field of fracture me-
chanics. 

R e f e r e n c e s 
1 M. L. Williams, " T h e Bending Stress Distribution at the Base 

o f a S t a t i o n a r y C r a c k , " J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 2 8 , 
T R A N S . A S M E , v o l . 8 3 , S e r i e s E , 1 9 6 1 , p p . 7 8 - 8 2 . 

2 G. C. Sill, P. C. Paris, and F. Erdogan, "Crack-Tip Stress-
Intensity Factors for Plane Extension and Plate Bending Problems," 
J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 2 9 , T R A N S . A S M E , v o l . 8 4 , 
S e r i e s E , 1 9 6 2 , p p . 3 0 6 - 3 1 2 . 

3 D. D. Aug, E. S. Folias, and M. L. Williams, " T h e Effect of 
Initial Spherical Curvature on the Stresses Near a Crack Point," 
GALCIT SM 62-4, California Institute of Technology. 

4 E. Reissner, "Stress and Displacements of Shallow Spherical 
Sliell-1," Journal of Mathematics and Physics, vol. 25, 1946, pp. 80-85. 

5 M. L. Williams, "Oil the Stress Distribution at the Base of a 
S t a t i o n a r y C r a c k , " J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 2 4 , 
TRANS. A S M E , vol. 79, 1957, pp . 109-114. 

Authors' Closure 
The authors wish to thank the discussers for their interest in 

the paper and for calling attention to corrections for equation (82), 
and hence (83) and (85) which follow. Incidentally, it is be -
lieved that the discusser's equations (46), (56), and (6 ) should be 
corrected by the multiplication factor 2 and three fourths on the 
right-hand side of the respective equations. 

In connection with the report (Ref . [3] of the paper) to which 
the discussers refer, consisting of the problem of a shallow spheri-
cal shell containing a semi-infinite crack, there are, as in the case 
of a cracked plate on an elastic foundation, three special cases of 
interest: 

( i ) a->- 0, X ^ 0 

( i i ) X 0 

(iii) a -*• 0 , X 0 

For details, the reader may refer to a paper by Williams [5], From our solution we can only recover the first two limits. 
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This is characteristic of mixed-boundary-value problems, which 
are solved by the Wiener-IIopf technique. In order to obtain 
the third case we must relax our boundary conditions at infinity. 
Thus the method used may, for some loadings, prevent one f rom 
recovering the flat-sheet behavior f rom that of the curved sheet. 
For these reasons, and as discussed orally during the presentation, 
the problem of a shallow spherical shell containing a finite crack 
has now been solved using a different mathematical approach 
(E. S. Folias, " T h e Stresses in a Spherical Shell Containing a 
Crack , " G A L C I T S M 63-20, November, 1963, doctorate disser-
tation). 

In closing, the authors wish to again emphasize the distinction 
between the Kirchhoff and Reissner type bending boundary con-
ditions [Refs. [3] and [7] of the paper) and urge caution in the 
use of stress-in tensity factors which, in contrast to the extensional 
solution, have been deduced from a local (bending) stress distri-
bution incorporating incomplete boundary conditions. 

The Influence of the Equilibrium 
Dissociation of a Diatomic Gas on 
Brayton-Cycle Performance1 

R. SABERSKY.2 This paper is an extension of the authors' pre-
vious work in which they analyzed the effect of changes in specific 
heat of the working substance on the efficiency of the Brayton 
cycle. The results of the present paper show that the effect of 
chemical equilibrium on this efficiency may, under certain con-
ditions, be significant. The effect comes about, presumably, b y 
the dissociation causing changes in the heat capacity in such a 
way that the Brayton cycle approaches the Carnot. cycle more 
closely. 

The range in which significant improvements are indicated is 
limited, however; to very low overall temperature ratios (T3/T\), 
and to a restricted range of the initial temperatures. In order to 
estimate whether or not the indicated improvement in efficiency 
is of practical significance, it will be necessary to carry out the 
indicated calculations for specific substances and to compute the 
actual temperatures which would occur in the C3'de. 

Furthermore, one may also point out that if the temperature 
ratios in question are small, changes in component efficiency also 
lead to large percentage changes in efficiency. Facts of this type 
will have to be taken into account in any optimization study, 
particularly as one could imagine that the component efficiency 
might be affected by the initial temperature T,, which has to be 
selected within certain limits in order to take advantage of the 
shifting chemical equilibrium. 

F. A. WILLIAMS.3 This is the second of two papers concerning 
the maximum theoretical thermal efficiency of the Brayton cycle 
for a working substance with a variable specific heat. The first 
paper dealt with an ideal gas with partially excited vibrational 
modes; this paper concerns Lighthill's model of an ideal disso-
ciating diatomic gas. I t may be worth emphasizing that chemical 
and thermodynamic equilibrium is postulated throughout the 
cycle in both analyses. The thermal efficiency is maximized, 

1 By T. A. Jacobs and J. R. Lloyd, published in the June, 1963, 
i s s u e o f t h e JOTJBNAL OF A P P L I E D M E C H A N I C S , v o l . 3 0 , T R A N S . 
A S M E , vol . 85, Series E , pp. 28S-290. 

2 California Institute of Technology, Pasadena, Calif. 
3 Division of Engineering and Applied Physics, Harvard Uni-

versity, Cambridge, Mass. 

subject to given compressor and turbine efficiencies, a given tur-
bine-inlet temperature and given compressor-inlet conditions. 
This maximum efficiency is compared with the maximum ef-
ficiency obtainable b y utilizing an ideal gas with a constant 
specific heat as a working substance. I t is shown that, for low 
turbine-inlet temperatures, the maximum thermal efficiency can 
be increased b y more than a factor of 2 b y choosing a dissociating 
gas with an optimum value of the dissociation energy. However, 
it is, of course, found that this higher efficiency is achieved only 
at the expense of emploj ' ing considerably higher pressure ratios. 
Although the thermal efficiency is not the onlj ' parameter of im-
portance in heat-engine design, the authors have certainly justi-
fied their conclusion that the dissociating working fluid merits 
further study with a view toward application. 

Force Singulari t ies of Shallow 
Cylindrical Shells1 

W. FLUGGE2 and D. A. CONRAD.3 The author is to be con-
gratulated for his success in finding a solution for the concen-
trated force in terms of integrals of products of cylindrical and 
circular functions. W e attempted several years ago to find such a 
solution, but were unsuccessful. The author, referring to our 
paper4 states that we concluded "that unlike the thermal singu-
larities, the force singularities are not expressible in terms of 
moderately simple solutions of field equations." In actuality, we 
developed a particular set of singular solutions to the shallow-shell 
equations, interpreted two of them as thermal singularities, and 
showed that the force singularity was not included among them. 
I t was not implied or stated that other sets of solutions, perhaps 
containing the force singularities, did not exist. Our only con-
clusion was that we did not find such a solution and were there-
fore forced to use other methods in dealing with the concentrated 
force. 

In a later note,5 we called attention to a convenient method for 
the calculation of shallow shells in general and presented a solu-
tion for the concentrated force on the cylinder. I t would have 
been of interest to see comparable numerical results using the new 
solution. It would appear that the series approach is more con-
venient for direct calculation, but that the author's solution may 
provide some advantages for use as a Green's function. 

Author's Closure 
I thank Professor Fliigge and Dr. Conrad for their kind com-

ments and remarks. I would like to point out that partly what 
I had hoped to be emphasized in the paper was the organic relation 
between the singular solutions, that is, the fact that once a 
singular solution of a partial differential equation is known in 
general, other singularities can be identified b y differentiation or 
integration. 

1 By A. Jahanshahi, published in the September, 1903, issue of the 
J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 3 0 , T R A N S . A S M E , v o l . S 5 , 
S e r i e s E , p p . 3 4 2 - 3 4 6 . 

2 Professor of Engineering Mechanics, Stanford University, Stan-
ford. Calif. Mem. ASME. 

3 Senior Staff Engineer, Hughes Aircraft Company, Los Angeles, 
Calif. Assoc. Mem. ASME. 

4 W. Fltlgge and D. A. Conrad, "Thermal Singularities for Cylin-
drical Shells," Proceedings of the Third U. >S. National Congress of 
Applied Mechanics, 1958, p. 321. 

6 W. Fltlgge and D. A. Conrad, " A Note on the Calculation of 
S h a l l o w S h e l l s , " J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 2 6 , T R A N S . 
ASME, vol. 81, Series E, 1959, p. 6S3. 
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