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The Bending Stress in a Cracked Plate
on an Elastic Foundation

Classical Kirchhoff bending solutions for a normally loaded elastically supported flat
plate containing a semi-infinite straight crack are obtained using an integral equation
formulation. Because the effects of initial spherical plate curvature are related to those
of an elastic foundation, the solution can be applied to the problem of a crack in an
initially curved unsupported plate as well. The explicit nature of the stresses near the
crack point is found to depend upon the inverse half power of the nondimensional dis-
tance from the point, vr/(D/k)'/t, where D is the flexural rigidity of the plate and k
the foundation modulus. The particular case of an infinite strip containing the crack

A

=/

along the negative x-axis and loaded by constant moments M* along y = +y* is
presented. The inverse half-power decay of stress is additionally damped by an ex-

ponential factor of the form exp(—ky*/\/j).

ﬂne of the problems in fracture mechanics which
apparently has not received extensive theoretical treatment is that
concerning the effect of initial curvature upon the stress dis-
tribution in a thin sheet containing a crack. Considerable work
has been carried out on initially flat sheets subjected to either
extensional or bending stresses, and for small deformations the
superposition of these separate effects [1]2is permissible. On the
other hand, if a thin sheet is initially curved, a bending load will
generally produce both bending and extensional stresses, and
similarly a stretching load will also induce both bending and ex-
tensional stresses. The subject of eventual concern therefore is
that of the simultaneous stress fields produced in an initially
curved sheet containing a crack.

Two geometries immediately come to mind: a spherical, and a
cylindrical shell. In the latter case one of the principal radii of
curvature is infinite and the other constant. It might appear
therefore that this geometric simplicity leads to a rather straight-
forward analytical solution. However, the fact that the curvature
varies between zero and a constant as one considers different
angular positions—say around the point of a crack which is aligned
parallel to the cylinder axis—more than obviates the initial geo-
metric simplification. For this reason a spherical section of large
radius of curvature is chosen for consideration.
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The essential feature of the problem is immediately revealed by
a study of the Reissner shallow shell equations [5, 6].

—(Bh/R)V*w + V*F = 0
Viw + (RD)7WVF = q/D

which upon suitable cross differentiation leads to the classical
linear equation for plate bending

Viw + Nw = % + P,

where N = 12(1 — »?)/R?h? and ®; is an arbitrary harmonic
function. It is evident, therefore, that small initial spherical
curvature in a thin plate will play a part similar to an elastic
support. Thus, attention will be focused in this paper upon the
solution for a cracked plate supported by an elastic foundation
which, aside from its connection with the fracture of initially
curved pressure vessels, may have direct value in civil engineering
applications such as roadways.

Formulation of the Problem

Consider the deflection and stress situation in a thin flat plate
supported by an elastic foundation and governed by the classical
equation of plate bending, namely

DV*w(z, y) + kw(z,y) = ¢(=,y) (1)

For the time being, attention is restricted to homogeneous solu-
tions of equation (1) which can be taken as the sum of two solu-
tions of the homogeneous equations.

(V2 % i(k/D)"*w(z, y) = 0 (2)

Denoting these solutions as w; and w, construct the representa-
tions

Nomenclature

I

constant determined by loading

a/N\

Eh3/[12(1 — »?)] = flexural rigidity of a plate
Young’s modulus of elasticity

shear modulus of elasticity

thickness of a plate

foundation modulus of a plate

bending moments as defined in text.

shear force as defined in text

= angular coordinates defined as:
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r= (22 + 90" ¢ = tanla/lyl; —w/2 < o < /2

w = transverse deflection of a plate in bending
x,y = rectangular coordinates in middle plane of a plate
a = (i)‘/z = gin/4
6 — (_i)‘/z — eq’(71r)/4
v = path of integration as defined in text
A = Vk/D
vy = Poisson’s ratio
Vo= 1=—p
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wio, 1) = [ 1P F Qo) exp [=Ns* — @92y
+ dAsz]lds  (3)

wi(z, y*) = fv [Po(s) F Qu(s)] exp [—A(s? — 2)/2 |y
+ iAsxlds  (4)

where positive real parts of the roots are taken.

Suppressing for the moment a definition of the path 7y, con-
sider the specific situation resulting when there exists a crack along
the negative real axis of the elastically supported plate. One
must require that the moment and equivalent shear vanish.
Suppose, however, that one has already found a particular solu-
tion to equation (1) which is satisfactory except that there is a
residual moment, M, and equivalent shear, V,, along the nega-
tive real axis, < 0, of the general Fourier type, say for a particu-
lar term ¥

My(p) = — Dmygeia= (5)

Vy(ﬁ) = — Dygeiax (6)

where my and v, are complex constants. Hence the homogeneous
solution, providing it satisfies certain physical conditions far from
the crack, will be required to equal the negative of equations (5)
and (6) along x < 0, i.e.,

2

o2 d _
Mz, 0) = =D <b—y2 +v a;) (w1 + ws) = Dmgeie=;  x <0
(7

3 3
Vy(xy O) = —D [s;a + (2 — V) ] (wl + w2) — Dvoeiuz;

o]
oz Yy
z<0 (8)

Assuming that the integrals of equations (3) and (4) can be
differentiated under the integral sign, equations (7) and (8) are
equivalent to

fv [(P1 F Qu)(vs? — a2) + (P2 F Qu)(ves? — (8%)] exp iksz ds
= _mo/)\Zeiaz (9)
x 1% QU — o +
v
+ (P2 F @)-(s* — 82)/%(ws? + B2)] exp iksz ds
= (_Do/xa)ei‘“’ (10)

which must hold along the crack, z < 0. On the other hand, for
2> 0 the deflection and its derivatives must be continuous across
y = 0. The conditions

on "
lim | — + ) — — = = = s
o [by" (wit + wyt) oy (w1~ 4+ ws )] 0;

n=20123 (11)

may all be satisfied by taking, for z > 0,
fy Q1 exp t\sz ds = 0; fy Qzexpidszds =0  (12)
fv (s* — a2)/2 Py exp thsz ds = 0;
f7 (s2 — 32)"/*Py exp i\szx ds = 0 (13)

Proceeding with the construction, arbitrarily let the following
combinations in equations (9) and (10) vanish,

<0
(14)

fy [(vos? — a®)Q1 + (s> — B2)Q:] exp iAsz ds = 0;

fy [(vos? + a?)(s? — a?)/°P,
+ (mos? + B2)(s2 — B2)/2Py] expidsz ds = 0; 2 < 0 (15)

which are evidentally satisfied by taking

Q= —(ws? — B)Q(s) (16)
Q= (ns* — a®)Q(s) (17)
Py = —(vs? + B2)(s? — B?)"/2P(s) (18)
Py = (ms? + a?)-(s* — a?)/2P(s) (19)

where P(s) and Q(s) are new, still largely arbitrary functions, leav-
ing in equations (9) and (10)

f [(vos? — )Py + (vos? — B2)Ps] exp iNsz ds = — ;\n: glan;
”
<0 (20)
f [(s2 — aﬂ)'/ﬂ(uosz + a2)Q,
Y
+ (82 — B2)/2(ws? + B2)Q.] exp ihsz ds
= (vo/A3)eiez; <0 (21)

which using the new functions P(s), Q(s) from equations (16) to
(19) reduce, respectively, to

(—mo/A2)eiaz; <0 (22)

f K(s)P(s) exp iAsz ds
%

It

f K(s)Q(s) exp ihsz ds = (—wvy/A3)eies; <0 (23)
5

where the kernel is

K(s) = (s2 — 9)"/%(ves? + 0)? — (52 + 4)"/%(vos? — 1)? (24)
= (s — o) /x(ves? + o) — (st — B)/2(vest + B7)? (24a)
Returning to the conditions of continuity across y = 0 for

x> 0, introduce equations (16) to (19) into equations (12) and
(13) to find

- f (vos? + 1)Q(s) exp 7Asz ds = 0;
04

fy(vos“’ — 0)Q(s) exp iNsz ds = 0 (25)
- f7 (st 4 1)"/2(wos? é 1)P(s) exp thsz ds = 0;
f7 (st + 1)/2(pes? + ©)P(s) exp iksz ds = 0 (26)
which can be satisfied by setting
fy Q(s) exp iNsz ds = 0; 2> 0 (27)
fy (st 4 1)'2P(s) exp iksz ds = 0; x> 0 (28)

taking into account that the second derivatives of equations (27)
and (28) with respect to z are also zero.

Equations (22), (23) and (27), (28) are therefore the dual inte-
gral equations to be solved for the unknown functions P(s) and
Q(s), which, when substituted into equations (16) to (19) and
subsequently into equations (3) and (4) along with the particular
solution producing equations (5) and (6), give the deflection func-
tion which satisfies the Kirchhoff conditions for a free edge along
the crack of the elastically supported plate.

Solution of the Integral Equations. First of all the path of integra-
tion, v, is taken along the real axis except at the point s = a/\
which is circled from above. The functions (s2 — a2)'/? and
(s* — 32)'/2 are made single valued by introducing branch cuts
as shown in Fig. 1. Specifically (s? — «2)'/2 leads to the insertion
of branch cuts [Im s| = [Im «|; with Re s> Re a for Im s> 0,
and Re s < —Re a for Im s < 0 as shown hatched in the figure.
Similarly, (s — (32)"/2 also leads to cuts along ]Im s| = [Im oz|,
which are taken as Re s> —Re 8 for Im s> 0 and Re s < Re 3 for
Im s < 0, as shown cross hatched in the figure. It develops that
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Fig. 1 (NOTE: Upper left 3 should read — f3)

the portions of the branch cuts for Re s> Re a and Re s < —Re «a
cancel each other leaving the K(s) analytic in the entire s-plane,
except for two cuts in the upper and lower half planes of length
[Re s| < |Re af.

We consider first the equations in P(s), namely, equations, (22)
and (28). Itisfound convenient at this stage to define an auxiliary
function

K(s)

(4 — vo)vo(st — si2)(s? — a2)'/2

F(s) = (29)
where =s; are the zeros of K(s) in the first and third quadrants,
respectively (this matter will be elucidated in the next section).
The dual equations for P(s) will be solved by an application of the
theory of functions of a complex variable following Clemmow
[2]. Thus, the equation for P(s) of equation (22) is satisfied if:

(4 — vo)wo(s? — s:2)(s2 — a2)'/2F(s)P(s)

o omo L(s) 1
T 2miN? Liao) s — ao

(30)

where L(s) is a function free from zeros and singularities in the
lower half of the s-plane inclusive of 7, and furthermore of alge-
braic behavior at infinity. That equation (30) solves equation
(22) results from Jordan’s lemma and the theorem of residues.
By the same argument equation (28) is satisfied if

(s + 1)"/2P(s) = U(s)

where U(s) is the counter part of L(s) is the upper half-plane.
Eliminating P(s) from equations (30) and (31), and after some re-
arrangement, we obtain:

(31)

U(s) — mo 1 I: (s = B/ :|
L(s)  2m(4 — wo)woN? Llao) |(s — ao)(s + s1)Fu(s)
(s + B)/: ]
B0 2
[(s el

where Fy;, (s) are, respectively, a U-type and an L-type function,
such that
Fy(s)-Fr(s) = F(s) (33)

(This latter factorization of equation (29) will be carried out in
the next section.) A solution of equation (32) is

(s = s)F(s)

L - «
(8) = =1 By’ (34)
U(s) = o [ (a0 + B)'/2
) 2m(4 — vo)vor? (a0 — s1)F ;(ao)
(s — B 1 (35)

(s — ag) (s + s)Fy(s)

Where the bracketed term follows from equation (34) evaluated
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at s = ap. It follows then, from equations (31) and (35), that
P(s)is given by:

P(s) =

Mo |: (a0 + ,B)l/2 ]
2m(4 — vo)vo2 [ (a0 — s1)F (ao)
(s — B)/ :l
X [(s — ao)(s + su)(st + 1)/2Fy(s) 8

Next, by following exactly the same steps as above, we find for

Q(s):

— U 1
T 2m(4 — wo)woN (a0 — s)F (an)(ao — @)/

Q(s)

1
* [(s — ao)(s + s1)(s + a)l/zFu(s):l @7

so that finally Pi,q(s) and Qi,s(s) can be deduced from equations
(16) to (19), and the problem is formally solved. The practical
matter of determining the factorization of F(s) as implied by
equation (33) will now be described.

A Factorization of the Kernel Function F(s). It is proposed to split
F(s) as defined in equation (29) into a product of a U-type and
an L-type function, i.e.,

K(s)
i(4 — vo)we(s? — si2)(s? — a2)'/?

F(s) = Fy(s)-Fy(s) =

Define first

G(s) = In F(s) (38)

where for definiteness the logarithm is taken as a principal value.
We decompose G(s) into the sum of a U-type and an L-type func-
tion

G(s) = Gu(s) + Gr(s) = In F(s) + In Fr(s)

from which the product factorization follows immediately. The
decomposition of equation (39) can be accomplished once we
know the singularities of G(s) which are the singularities of
F(s), namely, the branch cuts [Im s| = [Im af, —Re 3 < Res <
Re «a. :

To find the zeros of F(s), we rationalize the equation K(s) = 0,
using equation (24), obtaining a quadratic equation in s*. Of the
eight roots of this rationalized equation, only four satisty the
original equation K(s) = 0, namely:

g o ginsa | B0 = 2 22 — 0 + UK (40a)
= 8 = € a
¢ ! (4 = V(J)V()2

(39)

s = g = £ B/D|g (40b)

From the way it was defined in (29), however, F(s) has only the
two zeros in the second and fourth quadrants, namely
3 3 1
s = s =~ +(1.0004) exp (—1—) for w» = 2 or v = 1
where it may be noted that
1.000 < |si] < V1.0448

because of the physical restrictions on the value of Poisson’s ratio.

Thus, G(s) has a strip of regularity, namely, !Im sl < |Im al.
Since F(s) was defined in equation (29) to include the proper con-
stant such that its asymptotic value for large s gives unity upon
expansion of equation (29), i.e.

F(s) =1+ 0(1/s?) for |s| — ® (41)
it follows that for s belonging to the strip of regularity, Cauchy’s

integral formula gives:

w i © —i5
) = e g if ——G(_z)s de

42
2Ty z2— 8 271 2|

— @ 41y — o —18



where Ims <9< Im a, —Ima< — 8§ <Im <s. The firstintegral
of equation (42) is identified with G(s), the second integral with
Gy(s).  We shall put Gy(s) in a form convenient for numerical
evaluation by a deformation of the path of integration. The
function G(z) is made single-valued in the lower half plane by in-
troducing a cut for the logarithmic singularity (corresponding to
the zero z = —s,) in addition to the cut for the function F(z)
itself. The cut for the logarithmic singularity is conveniently
defined as a semi-infinite line drawn through z = —s, parallel to
the real axis in the negative direction. We wish first to evaluate
Gy(s) for s in the upper half-plane and then continue it analyti-
cally to the whole s-plane. For s in the upper half plane the path
of integration can be deformed into the real axis:

1 N €/
GQy(s) = %f z(—z)dz

=: 8

(43)

Since G(z) is an even function in z, hence equation (43) can be
transformed into the more convenient form

s ® G(z2)
= — d. 44
Gy(s) Sen f_m 2 g z (44)
which is equivalent to:
G el
Gote) = = f FO g, 2 g
2y 22— s? 2me P 22 — g?

€]
o [ A e sy
2Ty ot B 8

where the paths ¢, ¢/, ¢’’, ¢’’’ are shown in Fig. 2, hence

R . 0% & (46)
2 211 . 22 — g2

From the properties of the logarithm we have:

1 G(z2) 1 Sg — 8

b dz = —1In

211 o 22 — s? 2s Sy + 8
because, noting in Fig 3,
. 1 = 1 o
B B F @l

2 o (S22 7)F— s
1 @

Iy = ——
" 21

(47)

LY
o (21 r): — st '
and next recall that

In F(z) = ln{F(z)| + 7 arg F(z)
hence

—[In F(2)]wop + [In F(2)lpor = —2mi

Therefore,

’ /s
Fu(s) = exp [Gy(s)] = [z{ij ﬁ'(s)] exp [—sl(s)] (48)
where

1 G(z)
21 j; 2?2 — s? b

In view of numerical computations, the integral of equation (48a)
is transformed into a sum of real integrals

I(s) = (48a)

‘e f G@ L1
2w 22— %7 i

z2—8 477 ?

0+ G(s) /2

GGk) 1 G(2)
dz 1§ dz

Z -plane
+5 R
-a (o}
G g
o™
Ct
Fig. 2
I
- =) "5
I
Fig. 3

1]
_ In 5 5
2mil(s) = l "z &dw
2 = i \?
—1/V/2 (:c _ _\7§> — s
tan 1! (li—> — tan™! <ﬁ>
L (V2 A_ A,

+ zf

-1/V2 <x B ﬁ)z g

Ai: = A1 + AzR + BZI; Bi = B1 + B2R + Azl

dx  (49)

where

2
V) <z2 - %) — (£1 — vz V2)2
_ 1
Bl,z = 2110(:1:1 — Vo \/2) (.’L‘Z - 5)
- |:\/M? + N+ M:IW.

2
. [vm —~ M]‘“
- | R

(50)

(222 — 1)(3 + 222)

M= e+ 40+ Vaar

N = 4222 — 1)
(20 12 4 4(1 4 /2 a)

We shall need the values of I(s) for large ]s[ Its expansion gives
for |s! 2> 1%

@

I(s) = — D c,s72n

n=0

(51)

1 For future reference the reader should note that for small s

I(s) =, Gus™
n=0

where

oric. = 1 fl/\/E i\ (A B
W = — z — —= n{="—"———=)dzx
e s s (o vm) T ()
1/V2 i\ -
-l—if T — L_> (tan“B—"—tanﬂ&')dz
-1//2 Ve A- A,

Transactions of the ASME



where

2mic, =

1 fl/\/§ < i )%1 <A_2+ B_2> q
g X = T n R TR L
2Juyvz V2 A4+ By

13 ;\ 2 B_ B
+ 1,f <x - L_) <tan“ —= — tan™! —*) dz  (52)
—-1/2 \/2 A Ay

In view of equation (51), an approximate expansion for Fy(s), c.f.
equation (48) is:

s| > @1 Fy(s) = —i [1+4 (0 + s2)/s + 0(1/s%)]

and hence
|s| > @: Fu(s) = ill — (cr + 82)/s + 0(1/s?)]

Stress Distribution Near the Crack Point. From equations (16) to
(19), (36), (37), (53), and (54), we see that in equations (3) and
(4), Pi1,5(s) and Q,,2(s) go to zero, for Is] — =, at least as fast as
s~/ Hence, the integrals of equations (3) and (4) converge and
the differentiations under the integral signs are also justified, at
least for y # 0. The values of the derivatives at y = 0, z < 0 can
be obtained by a proper limiting process.

The stresses are given in terms of the bending deflection as

(53)

(54)

0w
= —2@ 55
e ¢ oxdy (55)
_ Ez 2w o2w (56)
%2 = T1 1 \ox2 oy?
Ez 0w i o%w (57)
g, = — — 4
L 1 — 2\ oy? ox?

where here z is the distance through the thickness, &, of the plate
measured from the middle surface. No subsequent confusion
with the complex variable will result. Then, in terms of equations
(3), (4), (16) to (19), (36), (37), (53), and (5H4), the stresses of
equations (55) to (57) can be expressed as a linear conbination of
integrals of the form:

f_: R(s) exp [—\|y|(s? == ©)'/* + i\sa]ds (58)

where R(s) behaves for large s, i.e., ls] — ® as:
R(s) = Rus™'/* + 0(s~"2)

and R, being a suitable constant. It is obvious, by changing
variables s’ ~ sz, that the stresses tend to infinity as »— /2 for
r — 0 which is characteristic of crack problems. Furthermore, by
expanding the integrands for large |s| we can find the variation of
stresses with angular position as » — 0. Thus we get expressions
of the form:

M, |s| =2~ exp (= N|y||s| + iAas)
and
N, [s]//2=n\n+1]y|n+1 exp (= N|yl[s| 4 iAas)
Here, we should mention that the exact expansion of the stress
integrals should be of the form (Fig. 4):
o
lim I: f ‘ (expansion for large s)ds
e—0 -
—1+e
+ f_l_ [exp for small (s + 1)]ds
1—e 1+e€
+ f 13 (exp for small s)ds + j‘l [exp for small (s — 1)]ds
- 3 gl
+ 1:_ (exp for large s)ds] (58")

The contribution of the 2nd and 4th terms can easily be shown to
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vanish. At the present we consider the singular part of the solu-
tion arising from the 1st and 5th term. Furthermore, for con-
venience, we integrate over (— «, «) instead of (— », —1 — €)
and (1 + €, «)in order to express the integrals in terms of known
functions, namely, the I'-functions.

It can be shown that the differences between equation (58) and
the integrals

To(z, y) = f_: (Mo|s| =72 4 No|s|'/2\|y|)e—Nullsl+iras g
(59)

are bounded for all 7, in particular for small », and by an appro-
priate deformation of the path of integration 7'(z, v) can be ex-
panded in terms of I'-functions. Without going into the details,
we list the results for the stresses on the plate surface z = +£h/2
below.

T(3/2)Gh(1 + 7)A2P, [ < © ) ¢>
= — 4 cos — — sin —
) \/)\r 2

2
Be 8
¥ cos @ | co8 o sin

T'(3/2)Gh(1 — 1)N*Qo @ L@
- i [2(2 — W) <cos bl -+ sin 2)
3¢

& B0 n 0
Vo COS ¢ cosz—i—sm2 4

= —F(a/z)Ehw’(l + iB\ZPO |:2 <cos 2 + sin —)
2%(1 + ) VAr 2 2

' 3¢+ . 3¢
— COS o sin ——
0S8 ¢ | COS B 2

T(3/,)ER(1 — ))\*Qo [ ( e . <p>
=+ — 42 — Z — §in —
21 + 7) \/)\r ( v) | cos 9 sin 9

3 3
+Vocos<p(cos2i7~—sin§>]+..,

_ TC/)BR(L + NPy e e
T T + ) Ve [2(4 — (COS g T 2>

B, B¢
Vp COS @ | cOS 2 sin D)

7 TOLEA = DTy (con % — %) | +
i1+ ») Var “’ 2 2 g

zy

(60)

©

(61)

(62)

where the upper and lower signs correspond to ¥y > 0 and y < 0,
respectively. Further, the general expression for the complex
constants P and @ are deduced as

= imo(ao + 6)1/2

k7 v T—
_ imol(a/\) + B8]/ (64)
2m(4 — vo)vor2[(a/N) — si]F(a/N)
— 1
@ = 2m(4 — o)W a0 — s1)(ao — )'/*F 1 (ao)
— 1 (65)

~ 2m(4 — wwNel(a/N) — sil[(@/N) — a]'/%F (a/N)



along with certain limiting cases of interest, namely
Casei: A—Obuta =0

- My ‘\/_‘ 2 l
P, = mo V a\ |:1+sl+s.+r/o+3/2>\
2m(4 — wo)voNla a
\2
+ 0 <;>j| (64a)
—vn\/x st + 82+ ¢ + /2
Qo = =1+ A
2m(4 — vo)vol2a Va a

2
+ 0 (%):l (65a)
Case ii® N # 0 but a — 0

— dmge /4 |:(4 - vo)yg:lV2 1 1
Ry = 2m(4 — vwN2 | /2 [1 + (26 TR
1 \ a a*
+ 87 — CO> X + 0<>\2>:| (64b)
_ = ivoe_i"/4 (4 = 1’())1/0]1/2 [ l i
% = 2m(4 — vo)voh3 l: V2 1+ 200 + 51

1
53]

The expressions for the stresses given above are approxima-
tions to the first term of the homogeneous solution. To this the
contribution of the particular should be added. It should be
noted, that along the crack (i.e. ¢ = —m/2) equation (62) gives
o, = 0. In addition to this we have from equation (5) the con-
tribution of the particular soiution, namely, the term:

Ezm,
a—m°

It thus appears as if the sum of the o, contributions is not zero
along the crack, which would not satisfy the boundary condition.
Such a deduetion, however, is not true because in the expansion of
the stress integrals, we neglected the expansion for small s. For
small s, point s = 0 is a pole, hence by taking the contribution
around the semicircle, we cancel half of the particular contribu-

tion. The other half must come from f i

O+ [

The integrand, however, is a power series with complex constants
which makes an explicit analytical evaluation very difficult and
computationally tedious.

A Particular Solution

As an illustration of how the local solution may be combined in
a particular case, consider a rectangular strip, infinitely long in
the z-direction and of finite width y* in the y-direction. Further-
more, let the plate be subjected to a constant moment M* and
zero shear at y = ==y*, and simultaneously subjected to a uni-
form normal loading ¢o. We proceed to write down a solution of
(1) as follows

Ay
2 (D) witlog, il 2 ookt
w®(y) = D)\" + A cos —= \/ cos 3
+ B sin -—. smh——_ (68)
V2 V2
5 For small s,
,\/B — e—i1r/8; __a — e’i(57r/8) (66)

anc

Fr(s) = g~ OB 4 o) & = [(4 - WD,&,J (67)

and using

oM o
M ® = —D C
3 [by2 + v bxzjl (69)
d%w %w
V,® = —D - 70
v I:by“ T ) bx?by] ()

compute

—D~M,™(y*) = —\? [A sin <i\/i2i> sinh (i‘}%)
ven(3)ea ()]

= 8 oo (35) o )

() ()] oo () e )
DR

Equating equation (71) to —D~'M* and equation (72) to zero
and solving for the constants, one finds

() (2) ()
DN nh <i\;*> cosh <\/~> + cos <ﬁ> . )

(%

(73)
o) () () ()
DX cosh <:\/L2> sinh ( > + sin ) cos <

along the crack, ¥ = 0, it is found that
M,@(z, 0) '

() (02) o () ()
o (35) (25 o (35) o )

(75)
V,®(z,0) =0 (76)

= M*

from which comparison with equations (5) and (6) indicates that

—D(mg, + img;)(cos az + i sin ax) = M*(A\y*/\/2) (77)

—D(vyr + wpj)(cos ax + 7 sin ax) = 0 (78)
or
a = vor = vo; = My; =0 (79)
mo, = —M*DYf(N\y*//2) (80)
where using equation (74),
J\y*/A/2) = —(BDN*)/M* (81)

Returning now to the stresses along the erack prolongation, for
example the normal stress o,(z, 0), one finds using equations (62)
and (64b) that
oz, 0) M*D=(\y*//2)

Eh 2V2 \/27r\/('3+u)(1—1/)(1+v) K

(82)
\/)\:v
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or, in terms of the stress,

TO*/V/2) (1 - u)'/ﬁ 1
Vo Vor 3+v/) Vi
It is interesting to compare this result to the one obtained for

the classical bending stress obtained at the end of a finite erack of
half length b, [1] when the initially flat (non-elastically supported)
plate is subjected to a uniform bending moment or stress o, * far

from the erack—for comparative purposes here, y* large. It was
found [1] that

®

oz, 0) (83)

%+ o

*
aﬂ

0.20
v=iss Vb
In order to obtain a fair comparison for the elastically supported

plate, consider equation (83) normalized on the average stress
through the uncracked portion, viz. o, *f(Ay*/~+/2)

a,(z, 0) _ _I—V 1 n
34+ v Vo

(84)

*
ay

_ 0.18 (S;)C
(D /k)T )

a,(z,0) 018
GOV T Ve

Hence with respect to local conditions near the erack point, one
conjectures that the spring constant (D/k)/* of the elastically
supported plate plays the same role as an effective crack length
b in an unsupported plate, providing the crack is reasonably far
from the boundary at y* and is sufficiently long compared to the
plate thickness.

Gonclusion

It is worth emphasizing that classical bending theory has been
used in deducing the foregoing results. Hence it is inherent that

§ 3*\"’2>

4 AR
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only the Kirchhoff equivalent shear free condition is satisfied
along the crack, and not the vanishing of both individual shearing
stresses. One might therefore expect the same type of dis-
crepancy near the crack point to exist between Kirchhoff and
Reissner bending results for this elastically supported case as found
for the unsupported case [3, 7], wherein the singularity remained
unchanged but the circumferential distribution around the crack
tip did change. Outside this local region, Kirchhoff results are
satisfactory.

Finally, if the foundation modulus is identified with an initial
curvature as indicated in the Introduction, it is relatively straight-
forward to deduce the combined stress field, although these results
will be reported separately.
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