THE STRESSES IN A SPHERICAL SHELL

CONTAINING A CRACK

Thesis by

Efthymios S . Folias

In Partial Fulfiliment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1964

(Submitted December 26, 1963)



To Kim



ACKNOWLEDGMENTS

I wish to express my sincere gratitude to Professor M. L.
Williams for his inspiring guidance, not only in the preparation of
this thesis, but also throughout my graduate studies. To Professor
J. K. Knowles, I am deeply indebted for his interest and construc-
tive criticism, which have been a constant source of encouragement.
I wish also to thank Professor A. Erdelyi for his advice in certain
mathematical matters.

To Drs. R. Reid Parmerter and Charles D. Babcock, Jr.
go my thanks for their help and suggestions in the experimental
work.

The research reported herein was supported by the Aero-
nautical Research T.aboratories, Office of Aerospace Research,
United States Air Force. The work is documented undexr Task 70524,
"Research on Mechanics of Crack Initiation," Project 7063, Contract
AF33(616)7806,

Also, thanks are due to Mrs, Elizabeth Fox for the excel-

lent work done in typing the manuscript,



CHAPTER

I

II

II1

v

Vi

VII

VIII

TABLE OF CONTENTS
TITLE

INTRODUCTION
GENERALITIES
SPHERICAL SHELL CONTAINING A CRACK
3.1 Formulation of the Problem
3.2 Mathematical Statement of the Problem
3.3 Reduction of the System
SOLUTION OF THE SYMMETRIC PART
4,1 Integral Representation of the Solution

4.2 3Boundary and Continuity Conditions in
Terms of Integral Representations

4.3 Reduction to Single Integral Eguations
4.4 Approximate Integral Equations

4,5 Solution to Approximate Integral
Equations for Small A

4.6 Determination of W and F
4,7 Determination of the Singular Stresses

4,8 Combined Stresses

SOLUTION OF THE ANTISYMMETRIC PART.

INTEGRAL REPRESENTATION. STRESSES
PARTICULAR SOLUTION

GRIFFITH'S THEORY OF FRACTURE FOR
CURVED SHEETS

EXPERIMENTAL VERIFICATION
8.1 Description of Experiment
8.2 Preparations

8.3 Conclusions

PAGE

16

11

11

18

19
23
24
26

27

29

34

41

4]

43



TABLE OF CONTENTS {Cont'd)

TITLE
CHAPTER PAGE
IX CONCLUSIONS 44
APPENDIX 1 47
APFENDIX 11 52
APPENDIX III 61
REFERENCES 65

FIGURES o7



NOTATION

c = half crack length

D =  En>/[12(1-v%)] = flexural rigidity
E = Young's modulus of elasticity
F{X,Y) = stress function

G = shear modulus

h = thickness

h* as defined on p. 35 (see fig. 3)

i = V-1

Kn = modified Bessel function of the third kind of order n
ii = kernels as defined in text

',EE = 2c = crack length of shell

Ip = crack length of plate

(Ecr)s =  critical crack length of shell
(.IZCI,)p = critical crack length of plate

= kernels as defined in text

ol

. = lim L.
Iy |-0
m = constant as defined in text
M_,.M ,M = moment components
x’ Ty T xy
n, = constant as defined in text

N.,N,N = membrane forces
X"y xy

P = periphery

q{X,¥Y) = internal pressure

= uniform internzl pressure
95

r = I x2+y2
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= radius of curvature of the shell
= \‘ x4y 2

= given R

= surface area of the shell

= constant as defined in text

= energy

= constant as defined in text

eguivalent shear
displacement function
= dimensionless coordinates with respect to the crack length
rectangular cartesian coordinates

1
= e

L

= {-1)

= 0.5768 = Euler's constant

surface energy per unit area

height of ¢he shell

X E2)2 4 ()2

it

e, = strain components

It
»

i
Ui

Fre? _120-0%0%
R%D R %h?

= same \ as defined in Appendix 1, page 59

= Poisson's ratio

B
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£ = | f__, Y = ,{ |

O, »0, 5T, = pending stress components
*» Yp yb

c_ ,0 ,7 = stretching stress components

o _,C ,? = applied stress components
X ¥ RY -

n

¢ritical {fracture) stress for shell
o = critical (fracture) stress for plate
&(x, y){x,y) = harmonic functions

X{x,vy) = deflection of a plate on an elastic foundation
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CHAPTER I

INTRODUCTION

One of the problems in fracture mechanics which apparently
has not received extensive theoretical treatment is that concerning
the effect of initial curvature upon the stress distributicn in a thin
sheet containing a crack. Considerable work has been carriec out
on initially fiat sheets subjected to either extensional or bending
stresses, and for small deformations the superposition of thesg sep-
arate effects [1] is pormissible. On the other hand, if a thin sheet
is initially curved, a bending load will generally produce both bend-
ing and extensional stresses, and similarly a stretching load will
also induce both bending and extensional stresses. The suhject of
eventual concern therefore is that of the simultaneous stress fields
produced in an initially curved sheet containing a crack.

Two geometries immediately come to mind: a spherical
shell, and a cylindrical shell. In the latter case one of the princi-
pal radii of curvature is infinite and the other constant. It might
appear therefore that this geometric simplicity leads to a rather
straightforward analytical solution. However, the fact that the cur-
vature varies between zero and a constant as one considers different
angular positions — say around the pcint of a crack which is aligned
parallel to the cylinder axis — more than obviates the initial geo-
metric simplification. For this rezson a spherical section of a
large radius of curvature constant in all directions is chosen for

consideration.
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It is of some practical value to be able to correlate flat sheet
behavior with that of initially curved specimens. In experimental
work, for example, considerable time could be saved if a reliable
prediction of curved sheet response behavior could be made from
flat shcct tests., For this reason an exploratory study was undertaken
to assess analytically how the two problems might be related. Although
it is recognized that elastic analysis is not directly applicable to frac-
ture prediction because of the plastic flow near the crack tip, consid-
erable information can be obtained.

Chapter 1II lists the pasic assumptions and equations of shallow
spherical shells. Then the complementary problem of & cracked
spherical shell is formulated in terms of Reissner's shzllow shell
equations in Chapter IIl where the problem is separated into two
parts, symmetric and antisymmetric, In Chapters IV and V the
sclutions to the symmetric and antisymmetric parts respectively
are expressed in integral form. They are then reduced to the solu-
tion of a pair of coupled singular integral equations, which are solved
by successive approximations for small values of the characteristic

4
shell parameter h =, /12(l- vz) < .« No effort was mede to con-
YRh

vert the pair of singular integral equations to a correspondging

Fredholm type, however Appendix II shows that the two methods
are equivalent.

The particular example of a clamped segment of a thin shallow
spherical shell is considered in Chapter VI which serves to illustrate
how»the local solution mayv be combined in a particular case. Then

in Chapter VII, Griffith's criterion is extended to the local region of
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an initially spherical curved sheet and an expression for its critical
crack length is obtained.

Finally, Chapter VIII compares the experimental and theoreti-

cal results for the particular problem described in Chapter VI.
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CHAPTER I1

GENERALITIES

In the following, we consider bending and stretching of thin
shells of revolution, as described by traditional two-dimensional linear
theory, with the additional assumption of shallowness. In speaking of
the formulation of two-dimensional differential equations, we mecan the
transition from the exact three-dimensional clasticity problem to that
of two-dimensional approximate formulation, which is appropriate in
view of the "thinness" of the shell. In this paper, we limit ourselves
to isotropic and homogeneous shallow segmentsg‘< of elastic spherical
shells of constant thickness. It is also assumed that the shell is sub-
jected to small deformations and strains so that the stress-strain
relations may be established through Hooke's law.

The basic variables in the theory of shallow shells are the dis-
placement component W(X,Y) in the direction of an axis Z, which for
shells of revolution coincides with the axis of symmetry of the shell,
and a stress function I (X, Y) which represents the stress resultants
tangent to the middle surface of the shell. Following Reissner [2],
the coupled differential equations governing W and F, with X and Y as

rectangular coordinates of the base plane (see fig. 1), are given by:

_ Eh VZW (-,g;)\’) . V*F(X"\’\ =0 {(2.1)
"=

viwi(zy) v vrzy) - AED (’;'\’

(2. 2)

* A segment will be called shallow if the ratio of height to base diame-
ter is less than, say, 1/8.
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The usual bending moment components Mx’ M _, MX are de-

fined in terms of the displacement function W as:

M, ==-D f:’...__.-vi--kw (2. 3)
2 =
.a'l
My = =D |34y 2w (2. 4)
aY* X
- v
M'ﬁ\& - b U p‘) 3X.a\( (2" 5)
Similarly, the membrane forces are defined in terms of the stress
function ¥ as:
>
N, = =2F (2.6)
Y™
2'E
™N = - 2.7
Ny = - 3F (2.8)
X DY
In view of (2.3) - (2. 8) the bending stress components are
% L]
e =_EZ WLy, AW (2.9)
*y (v-»*) 2X> Ay
HY 2
G, =-EZ SW A L oW,
jh Cl“))") [ BY" nbi-._ (2.10)

(2.11)
X BY
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Similarly, the extensional stress components are

N
6, = L 2F (2.12)
& = \ BF 2.13
j?. ‘ﬁ. »x* ( )

8. mg oy (2.14)
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CHAPTER 1III

CRACKED SPHERICAL SEEL],

1. Formulation of the Problem

Consider & portion of z thin, shallow spherical shell of constant
thickness h and subjected to an internal pressure g{X,Y). The materizal
of the shell is assumed to be homogeneous and isotropic and at the apex
there exists a radial cut of length 2¢ with respect to the apex. The
coupled differential equations governing the bending deflection W(X,Y)
and membrane stress function F(X,Y) are given by 2.1 and 2.2. It is
convenient at this point to introduce dimensionless coordinates,

namely

X = X
X2 = VY < (3.1}

whick change the homogeneous parts of 1.1 and 1.2 to:

tehe g'w 4 T'FE = o (3.2)
L3N
' o+ 22 vr =z o (3.3)
)

As to boundary conditions, one must now require that the normal mo-
ment, equivalent vertical shear, and normal and tangential in-plane
stresses vanish along the crack. HHowever, suppose that one has already
found” a particular sclution satisiying 3.2 and 3.3, but that there is a
residual normal moment My’ equivalent vertical shear Vy, normal
in-plane stress NY’ and an in-plane tangential strecs ny, aleng the

real axis |x| <1, of the form:

N
i

" See particular solution, Chapter V1.



M‘l = - ‘%1 ", (3.4)
®)
V‘; = — % Vo (3.5)
[
@
c
1§}
N = i‘?—-
1 e (3.7)

. - - *
For simplicity, we take m ., Vi, D, to to be constants and furthermore
we divide the problem into two parts:
Symmetrical: where vy = to =0

Antisymmetrical: where m,  =n_ = 0

2. Mathematical Statement of the Problem

Assuming therefore that a particular solution has been found,
we need to find now two functions of the dimensionless coordinates

(x,y), W(x,y)} and F(x,y), such that they satisfy the partial differen-

tial equations:
4
- ER-RQI' T W 4+ YVF = 0 {3.2)

V'w 4.5 U
RO

© (3. 3)

e
For m , n .t , v_ non-constants, see the remarks on Chapter IV,
sectior 7.
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and the following boundary conditions. Aty = 0and Ixl<1:

M1(x,o)=-%[ v, ¥w| = Ddm. (3. 8)
< 331 Sx* e
W, (o) =2 B + (a-¥) P ‘l =b e {3.9)
1 < _"';3'_"3 Bx™2Yy c3
VYR "
N3 ey = — 25 = e (3.10)
R ¥ A <
2
Ny (%8) = - Sy = e (3.11)

Next, to satisfy continuity requirements, we require the following equa-

tions to hold for y = 0 and Ix1>1

T ‘_‘63"‘ (w*).. oy k )} 3-42)

\ ry - - -
G L35 (- () =
(f\q_: 0)\J3-,3.)

Furthermore, because we are limiting ourselves to a large radius of
curvature for this shallow shell, i.e., small deviations from a flat
sheet, we can apply certain boundary conditions at infinity even though
we know physically that the stresses and displacements far away from
the crack are finite. Thereloure, to avoid infinite siresses and infinite
displacements we must require that the displacement function W and
the stress function ¥ with their first derivatives to be finite far away

from the crack. These regtrictions simplify the mathematical
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complexities of the problem considerably, and correspond to the usual
expectations of the St. Venant Principle., It should be pointed out that
the boundary conditions at infinity are not geometrically feasible. How-~

ever if the crack is small compared to the dimensions of the shell, the

approximation is good,

3. Reduction of the System

Reissner [{3] has shown that the solution to the system (3.2),

(3.3) can be written in the form

W= A+ & (3.14)
F =—% VAL QFEL N (3.15)

where ® and ) are harmonic functions and X satisfies the same differ-

ential equation as the deflection of a plate on an elastic foundation, i.e. ,

4
(v "'“ﬂ]ﬁ =0 (3.16)
where
‘s gl ct s 2 {1-0%) e\t 3.17

The function | represents the inextensional bending part of the solution,

and & represents the membrane part of the sclution.



11 .
I

CHAPTER IV

SOLUTION OF TEE SYMMETRIC PART

l. Integral Representations of the Solution

We next construct the following representations which have

the propcer symmetrical behavior with respect to x,

&5 L3191 IR TORTY — shad
+ Ve }us&s&s (4.1}

Wyt = S {? e +%, e

_Xs*«.x“'m oo
1 & \ maxséi (4° 2)

X L = - s_"‘-\zﬁ\
F (o) =:L._B_E\ {Re -
CI.
where the Pi's {i=1,2,3,4) are arbitrary functions of s to be deter-
mined from the boundary conditions, and the + signs refer to y > 0
and y < 0 respectively.

2. The Boundary ard Continuity Conditions in Terms of the Integral
Representation

Assuming that we can differentiate under the integral sign,

formally substituting 4.2 into 3.10, 3.11 yields respcctively:

2.

= 3 g TR L[]
e m&[ ey . X o, e_"ﬂ“lﬁlt.osﬁc\s}=ﬂ, s Ini<t

14fe <],
{4.3)
and
&s—ul"“&l .55 TSN fui _sl\l\ A
b i \.‘AtbS[P s-ute =P Nsb e + Gse 55"‘""5 =
Wiae

(4. 4)
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where again the + signs refer toy > 0 and y < 0 respectively. A suf-

fictent condition for Eq. 4.4 to be satisfied is to set
SFP, =- (v Jomir —®, Js00) (4.5)

Furthermore, it can be showu thal the continuity conditions on F and

its derivatives for y = 0 and | x | > 1 are satisfied if we take
Sm{ [sa._;,xi- ?‘ + -"s 31-»-'\,3\‘- ?1} oSS 45 =0 ; xi> (4,6)
Similarly, introducing 4.2 into 3.8 and 3.9 we obtain respectively:

» , R Rl T , IR PEREEC TV
Hiwa {g [?. (Vos™ i) & > + P, (est+ i) @ +

Lat>e

A ps?py e ¥ -x woxs ds } =", Ixl<d
(4.7)

® Rroerai A il
i FI {i% \\T’l i—;;':-;\:\ (Yoba*b)\‘)ﬁ X +sz (Vesa"“')\a)e- )Ei-

twl=ro

+ l"oﬁal’a e..a\%\} us:s&s.\ =6 Ix\<d (4. 8}

¥

Again, a sufficient condition for Eq. 4.8 is to take
$ Py =— i\ls‘-qg- (vos*+i%t) P+ TRl (s i\ R } (4.9)

Further it may be easily shown that the continuity conditions are satis-

fied if

g { sig P~ amain ?2_.} ..t;_ cosxsds=o ; VXV >\ (4.10)
=}



~]13-
In view of 4.6 and 4.10 we conclude that the individual integrals

must vanish, namely

S i__.‘ ! I cosxsc\s = o N =y > 4
B -

Co B
[ B 90 wssds =o o sy (4.12)

2
o )

Therefore we have reduced our problem to solving the dual integral

equations 4,3, 4.7, 4,11 and 4.12 for the unknown functions Pl(s) and

PZ(S).

3. Reduction to Single Integral Equations

Because we are unable to solve dual integral equations of the
fype discussed in the previous section, therefore we will reduce the

problem to singular integral equations. Let

W () = S L [FFoRF cosxsds o sl {4.13)
S
D
and
] —_—
W (o =S Lo [550F cesxsds R (4.13a)
SL
&

which by Fourier inversion gives:

o

B oy =20 wr) wsysdg (2. 31)
% i
: )
and solving for Pl
B(s) = = S & wis) eergeds (4.14)
n PR

<

Similarly
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Py = & S w(5) cesgsd (4.15)
where the functions ul(f;,) and uz(g), due to the symmetry of the prob-
lem, are even, Formally substituting 4.14 and 4.15 into 4.3, 4.7 we

find after changing the order of integration and rearranging

L2 . * *

N, = - 2ide g TOINETNOPES (4.16)
. *

My =~ A5 &" i\ wils) L)+ (8 L } o (4.17)

where

£ ™ 4 !5 Py S

- 3 -5)sds
L= Sa e cos (x-5) 3 (4.18)
- L Sm 52 e st o Lx—s) sds
2

* -t fal
""L'S s? - sho! wsh—g}s&ﬁ
2 o

st BT
. _;_:S {5 (rog™iX) o e j\ s(ves™ i) e o ‘k Cas (N"ﬂ*é\s {4.20)

3 s NJ.'NI-

-]

¢ i g _ shul sd 421
L“ERLS“{E_J%%‘%K% - 5 {vob" q’\‘)e. \ms(,\g) 5 {4.21)
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The integrations in 4.18-4.21 may be carried out explicitly by making

s
use of the Fourier cosine transforms

S°° e Vs wsJsds = ML (4.22)
& f“

g‘” 15%4a I
e

o \,5='+ ot

and similar results obtained by differentiating them with respect to x

and y {sce Appendix I}. In these formulas pz = t';z + yz’, and Kn denotes

warsds =K, (o) ; Reado  (4,23)

the modified Bessel function of the third kind of order n.

The expressions 4.18-4. 21 then become respectively

%2 2 [ BT [yt ALY Iy
2.].., =2 ._S:_{—le?: (2; 3‘51) Ku()??} [—-—e-r—_'s—-'i'g—'g‘— (Z 3!3?‘”\‘.0?@

(4.24)
+ "{ - é;lff}
{ £
* Ve L W2, 2 51
2L = '?_x {_?dé.i: (Z-ii‘ﬂ) Ko (ag) —Lf"_é{— +—E’—§- (7 3lh|j] K Ot
(4. 25)

+2L _ 24w’
¢ -

L L ~ 3p3r® L2 L A K
aL s f:{'”';f((“““‘) Ka(ate) »,Y_‘A_%ai. __?P_f_ (7% 3ty )] \(286)
(4. 260)

- Ly (e v AE - MM 2 }
3 £ p* t

= .
Formulas 4.22 and 4.23 may be obtained from [4], pages 14 and 17
respectively,
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* + 2 2 3{3 <
o S () s ) (R e (e v

‘ {4.27)
LT INEP SO E ST =\ }
€ gt e gt
Thus, the limits as |y | — 0 of NY and M, are found to be respectively

L N .. aidep ,A_X' [ mm - mmn)ds

LYY T nc? ax J_

la\—»o 3

M- - a2 .f.&l {mts} L, + “;(E)L*.} dx

where the integrals are understood to be of Cauchy principal value and

=_.-1 z 2.3 =
avL = »’?-K,(me\z\)-('h vE - -a,-%} K, (212 + z (4.28)
3 i__{ i
2Lk, = T {M‘)K(x \Z) + 2 e (4. 29)

2 a3
Ay = - ’-‘—}9- K, (o181} =% (¥ £ *‘%%E\) K. (gl + (4. 30)
¥ L v 2y _ ot
b £ ¥ (012 « 2o
A, =- voXe: o 22 L and
P ROz e RO z\z\\K izt «

(4. 31}

BEEPLIV ) 2y, _ f*at
ewm‘nmm) * = —9-2-—
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If we set NY’ My, in the limit as Iy | — 0, equal to -n_ and -m _ re-
spectively, integrate with respect to x, then we {ind that they must

satisfy the integral equations

5_ {u., (¥) =L, - w, (3 :LL_Jg Ag h% X e (4,32)

1
S {L"\(S) al,~+ \A,ntﬂ-‘l‘l.“} AS = - 0o X

il ¥

< ) (4. 33)

P

The kernels Ll', Lz, L3, L4 have singularities of the order 121

T x-E’

*
as can easily be seen by observing their behavior for small arguments:

al, = - LB bt (xg) [ - R N

A {x~-§) & 2
(4. 34)
+ O ( o (x—.’.f‘{m’)\lx-!q
= - 22 Ao (yegy | 5. . 3% L 3 oo Da-E
&La‘ a(x_!) TN (! E‘K_aa 4 L 2 :\-l
: (4, 35)

4 O (% (-8) \\x—if)

&
2L, = - 2o* (4os) 4t (x-w) | Sve-s L 4o A«g\u—m]
3 L (x-3) M )K- i G L)
(4. 36)

4+ 0 (1“ (x-S Mx-§\)-

* See Appendix I for expansions of Kn(z) for small =z.
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AL = - "A"E"id.-%) .gfn(“(x—s){”“a - 3% (8* Y \x*‘!\)]
4 2 (x~8) 32 g 2

(4.37)
+~ 0O ( A (-3 M}\x—!\).

We require that the solutions ul(x), ua(x) be Holder continuous
for some positive Holder indices My and N for all % in the closed in-
terval {-1,1] . "thus in particular ul(x), uz(x) are to be bounded near
the ends of the crack.,

The problem of obtaining a solution to the coupled integral
equations 4,32 and 4,32 can be reduced to the problem of solving two
coupled Fredholm integral equations with a bounded kernel. See

Appendix II,

4. Approximate Integral Equations

Because of the complicated nature of the kernels I“l’ LZ' L3
and L4’ an exact solution for the unknown functions ul(x) and uz(x)
is extremely difficult. On the other hand, for most practical appli-

cations the parameter \ attains small values as follows from the

definition of X namely

A o e/ N\ = A0 (o). Yo
N= -‘-“—3\}.%/_% Y = V2o (%Y (%)

It is clear that M\ is small for large ratios of R and small crack lengths,

h
As a practical matter, if we consider crack lengths lcas than one tenth
. . 2 7TR
of the periphery, i.e. 2¢c < qo— » and for hE < 103 a corresponding

upper bound for M\ can be obtained, namely X\ < 20. Thus the range of
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A becomes 0 < A < 20 and for most practical cases is between 0 and 2,
depending upon the size of the crack.

If we consider small N\, we may replace the exact singular

integral equations with the following approximate set

\
S-—. i u.l.(_ﬂa.-ﬁ,-— R“LE) all} c\g = - ﬂ‘fﬁ; x AT (4-38)
5‘ {um(ﬂ&&-ﬂ W, l.!)u.*} AS = = "MenX 3 fni<y (4' 39)

where the new kernels are:

a (4. 40)
2L w84 st (ew\] So L 23 x—s\]
1 Py + Q (‘f\ EEK_B-I R 3 0

.1
-‘i-f.:ll a_ Wt I —,\‘*d* (x—g‘; ‘_%mg%_%__g_\}q\;-t)]

2 -%) (4. 41)

Uz - e Gen| St + 420 (o0 Al | (4.42)
o R4 Lt (e [svo-s 4-39; ok '} .

:!.-e“ = L:{-((_i—.;j +\a('(x §‘) = ke L‘dﬁ--ﬁuL.LTﬂ) (4. 43)

5. Solution to Approximate Integral Equations for Smzall X

For the simple case \ = 0 the problem reduces to that of z flat

sheet under applied bending and stretching loads, the solution of which
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has been investigated by many authors. For example, the problem
for both bending and stretching for an orthotropic plate, containing a
finite crack, was investigated by Ang and Williams [1] and a solution
was obtained by means of dual integral equations, It can easily be
shown* that the dual integral eqguations can be Lransivrmed to two
singular integral equations of the type 4.32 and 4. 33 with simpler
kernels., Furthermore, these are not coupled and the solutions can
easily be cbtained as in §47 of [ 6]. Without going into the details
they are found to be of the form A}ll-£” , where A is a constant .,

Similarly, the solution for an initially curved sheet must, in
the limit, check the above result and because ul(ﬁ) and uz(ﬁ) are in
particular to be bounded near the ends of the crack, it is reasonable

to assume solutions of the form

w (&) =h-g ["hﬂ? Ay (1-F%) + - ‘_\ 5 \Er <) (4, 44)
e (= VE [Bawn cv)a ) im0

where the coefficients Al,AZ, eeos Bl’ BZ’ e+ can be functions of A

but not of £,

Substituting 4,44 and 4,45 into 4. 38 and 4.39 and maxing use

of the integrals given in Appendix I we obtain:

" See Noble {517,
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A et (G- 2) 3o 300t (3 rnze)xe 201

At & A 5_35)5. 3 k«{g_ ool o a]
+B1{ = L N aa?ax-&-g')\d 4(1-\'}»\ = )).\-\,-G)\

{4.46)
42 4
R ity

* 2 wivL ¢
+Ba{335—%ﬂx-l{-‘—nx3\+ O(“&X)——ﬁx

‘Similarly:

Tad
Ao 22 et 2] ety (1) (o8 241

+8, {__ (4% EL‘%’.' x4+t [E!;.;% + :‘_'_:l’r_gl .g_x + l*oﬁ (ﬁ:‘_z_'@“_% (\+-&. l%.)x - _2_ A’]l

+A1{-(4-v=) i?:' (2nx- “"3)} (4. 47)
+ Bz{_(-\-vojﬁ%:(__}nx-nﬂ)}-\- 0] (7\‘-9»\‘)\) = - Mo TniX

Next we equate coefficients. In particular we first require the coef-

ficients of the x3 terms to vanish which gives
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ho+®, = - 2 (A8 (4. 48)
F
Az_" B:.. = - ':““i'a—:"‘f" -O(:—( ﬁ“""BIB {4.49)

Then substituting 4.48 and 4.49 into 4.46 and 4.47 and solving for Al

and B1 we find

A1=-nnc‘ {L+ o 3-3ve . ? (__Ia +_1i.q.§3_”1 A% (4. .R..'A’nu)}
(X4 -~ ')'o

RO V6 Ao | a-p, \ 22
(4.50)
Mo f et B2 pna( 1, 38) o 3 ey 4.&\3’5"-‘)} TR
bre (B B () » ot (R} 0 (000)
B o MeC §y Lo aan  per (3T P Aoy, L 1}
T SRR TH el ool e i o o2 A (ke 20
i - (4. 51)
+LKL+L 2 W N A GRS x >
.\l?'&(q-vg) LI Vo ) P ( ) X O("\ "?’“')\)

We should point out that, if coefficients Al, Bl of higher accuracy are
desired, say up to order th, then it is necessary to solve annxn
algebraic system. In effect, this is & method of successive approxi-
mations for which the question of convergence will be investigated in
Appendix II.

It thus appears that for A< 2 the power series solutions of

the form
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N -

gy = Z AL G (4.52)
N ~

U':N)(.g) = J‘"Sz z‘ B‘h-ﬂ Xﬂm (t_gl) {4.53)
Mze

in the limit as N — oo, will converge to the exact solutions ul(g) and
uz(g) of the integral equations 4.38 and 4.39. However since most
particular solutions will give us a non-uniform residual moment and
normal membranc stress along the crack, it is only natural to ask
how the solution changes. Suppose, for Ix | < 1, we expand m and
n inthe form E anxzn (even powers because of the symmetry of
the problem), then our npravious method of solution will still be ap-
plicable. And as can easily be seen from eguations 4.32 and 4. 33,
although the coefficients An, Bn in this case may change, the char-
acter of the solution will still remain the same. Finally, because we
desire to focus our attention upon the singular stresses around the
neighborhood of the crack point, we need only to compute coefficients

6. Determination of W and F

In view of equations 4.14, 4.15, 4,44, 4.45 and the relation

I Q‘la.)mkﬂ [F(hari-)]_‘(@_x‘]h“?j oL KA
» L . y
g ) ]k(as) wexsds = ‘ ; e\-t? x

) o S
{4.54)
which can be found on page 41 of [4] we have:
PY= 2 iA"},(ﬁ\-\- 3t A, -:[*—f'l + o(x‘*j} (4.55)

8-l



and similarly

R&)= % {,B‘ 3, )+ 38, 33-‘?- + o(m*ﬂ (4. 56)

sh4 ok
where Al and Bl are given by 4.50 and 4.5l respectively. And finally

substituting 4.55 and 4,56 into 4.5 and 4,10 we find

B = - (£,48) T,6) -3X (A ) 2O

(4.57)
- -S:__.._"\l (k.-—%.\ 3\(,5) ~ O ('-A‘ﬁ)
Yo3 %
and
L) == (M-8 3,06 - ot (A-n) 2280 4 0(58) (4. 58)

Therefore, a substitution of the above relations into 4.1 and 4, 2 will

determine the bending deflection W and membrane stress function F.

7. Determination of the Singular Stresses

In view of equations 4.1, 4.2, 4.55, 4,56, the bending and
extenslonal stresses defined by 1.9-1.14 can be expressed in integral
forms which may then be evaluated using the relations 14-17 of Appen-

dix I. Without going into the details we list below the results.

*
Bending stressess: On the surface Z = + g
G =-—_E.'.g-w—-....._P‘:2.. .}_ 5_—9— ,‘— Lo% ﬁ.)+ !‘;O 4-59)
s a(\w}c‘J“é"(*u = T a 2 O(‘ ) (

4 Thmr T (M etege o) s
a (-

* Note because of the Kirchhoff boundary conditions, the bending shear

stress does not vanish in the free edge. For the flat sheet this problem
was discussed by Knowles and Wang [7].
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e

~  _ - &i Peo L-mg w8 A=Y . 56 ° 4,61
Rt T G-»)er e x Ttz T)J" O () { )

where the + signs refer toy > 0 and y < 0 respectively and

:‘P.: = d;)\" A.—B| = Mo -‘\1 { BTy "~ 4-3”58 4 43V, (|_~_£“ 3:')}
) 2R T Gre (e-wyl 32 s e e
(4.62)
y o Lo ot 1:33@.} + 0 (2w,
¥T (4-34) 32 4A-Y C )
Similarly
Extensionzl stresses:
¥, 3 & A se) °
€ = 2o __ [ 2 ov8 4+ L s 584 O 4.63
6. = _tza [ % o _ A L_'si) o(we 4.64
?n &C»"TE ~ il = 4 can R, il (. ) ( }
e = = b Loain® oL am E .
N S N

where

t

4
?z.o = ‘:’\Z"f% (A‘"\'B‘)
= Mo C* 30 ~2), MeWVERD C‘{_l_} 32 .=34,"-\"]I
'y {“' 33 AT T @ g LRTE] (4066)

+ 0 (rdwn).

It is apparent from the above equalions that there exists an interaction
between bending and stretching, except that in the limit as A — 0 the

stresses of a flat sheet are recovered and coincide with those obtained
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previously for bending [8] and cxtension [9]. Thus the stresses in

a shell are expressed in terms of the stresses in a flat sheet,

8. Combined Stresses

In general, the combined stresses will depend upon the contri-
butions of the particular solutions reflecting the magnitude and dis-
tribution of the applied normal pressurc. On the other hand the singular
part of the solution, that is the terms producing infinite elastic stresses
at the crack tip, will depend only upon the local stresses existing along
the locus of the crack hefore it is cut, which of course arc precisely
the stresses which must be removed or cancelled by the particular
solutions described above in order to obtain the stress freec edges as
required physically. Hence the distribution of q{x,y} does not — to
the first order — affect the local chara_.cter of the stresses at the crack

point,
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CHAPTER V

SOLUTION OF THE ANTISYMMETRIC PART

1. Integral Representationé and the Stresses

ES
It can be shown that the kernels are given in terms of
w R PR ]
g L e A-i'\q{"s ds
b 5
which we cannot evaluate in a closed form. Therefore, we will re-

strict ourselves to the apecial case where v, = 0 and t, # 0 but a

constant. In view of the above, we can assume the following integral

representations of the solutions

g% i 1 s bEh - sl
wixyy= 3 flqs Mg e T, R, € }Amxsés (5.1)
* gy e -sh)
fe =z e o, 7 7 g€ 3 Q. } ainnsds (5.2)

=]

where again the ¥ signe refer to y> 0 and y < 0 respeclively, Without

going into details (see Appendix IIl) we list below the results for Z =%

_—__"_'Eeu ot*y* E‘;u q+1) w8 Va - 3 ee
Sy 2() AwE cr ( 3 M3 "T‘“““TQ) + O(e?)

(5. 3)

6,77 Loy bl (pang - L wngp) 4 o(e) (5. 4)

Yoy - %__ j—i—)‘ﬂ""é‘l (5% s s - e cos 5.;.} ¥ OC€) (5. 5)

CeT R B (§ b agonie) sole 60
9.4"1 {L 4

* For more details see Appendix III.
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6 =+ XEE B (1 sing - Lsimge) 4 0(e) (5.7)

Ty Dma B (3 iglbesm) 2o(e) )
where

5, = iﬁ {L-\--%?-i-'- + 0 {x“h\)} (5.9)

S g et o bta) o

which, for the case A = 0, also limit check the results in refs. [8] and

(9].



-29.
CHAPTER VI
A PARTICULAR SOLUTION

As an illustration of how the local solutivn may be combined
in a particular case, consider a clamped segment of a shallow spheri-
cal shell of base radius ﬁo and containing at the apex a finite radial
crack of length 2c in the direction of the X-axis (see fig. 2). The
shell is subjected to a uniform internal pressure de with radial ex-
tension Nr = qOR, and because it is clamped we require that the
displacement and siope vanish at R = ﬁo. For this problem, Reiss-
ner [10] gives the solution of the coupled-extension-bending equa-

tions for the uncracked shell as:

‘Nr(r.) = C, hee Qe+ C bel () + C {6.1}
= Ef* - - - s a :
FP(“B Er.___...‘n(\_ﬁ) {C‘\at\-(?\!.) ¢ b bcr.‘)} ; 1 R {6.2)

where

C - CzQQ R J \a (.l—y") .{_9_ ‘b < ‘I.», (_’)&‘o}
' = pa
RSN Leet’ ey ¥+ oo’ Gl

C, = - ¢, { _\’.v"f(‘h‘r—o)}

\:1.(-' (},'ﬂ.o)
C. =-C { bex (Aze) bei (o) —bei (o) ber w“’l}
2 ' bei! (ACo)

Along any radial ray, and in particular along 6 = 0, 7, the bending and
extensional shcar vanish by symmetry, and the circumferential bending

and stretching stresses are
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P 7
_ b el (e - (- bev (o
Moy = 2o, [vbeiGry - (o) kel |

- L - b LI( x } 6.3
c.?_[v e () + (=) ___3._;\_1.1_)_] (6.3)

N ey = BRSO {= et /() —c_a\wr."(wg,)} -1 3.R (6.4)

V2 (1=

N gle) =0 (6.5)

Veo (7)) = © (6.6)

Therefore, the homogeneous solution must negate these values from
the particular solution. But since in Chapter IV we already have ob-
taincd a solution for uniform loadings along the cra.c;k,* namely R
and n_s therefore we will make use of these results in order to obtain
an estimate of the stresses in the vicinity of the crack. As an engi-
neering approximation, hy considering an upper and lower bound on

m and n , We may estimate an upper and lower bound for the stresses
in the neighborhood of the crack point. On the other hand, if we are
interested in the stresses away from the crack, sav 3 times the crack
length, then by Saint Venant's principle we need to take only the

average values. Thus we define

tw)

(e oD Py

Do o min M, & DTMut  cwmax Mo =D T
c? ixy<l, =0 o <, 8z0 c

ada

" For non-uniform see remark in sect. 5, Chapter IV.
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and similarly

@ P @Y ()
e = "Min NL € Nire < mox [N] e = '“0_
c* xid 1, @=0 0 c* (TIPS L1 ek

Next, let us consider a spherical shell with the following

geometrical dimensions:

R

o
R
1.
v
2¢
E

“from which

A

T
s}

The following table shows the variation of the residual moment M

0.074
0,117

0.164

= 4,25 in.

= 20 in.

= 0,009 in.

= 1/3

= 0.46 in,

= 16X 106 pei

we can calculate the parameters

il

0.98
18.50

1l

{P)
6o

and membrane force Nélz) along the crack.

Y (P} (P)

M= A Nog Mpo
0 -0.50 q_ R 0.89 % 10" % q_ Rh
0.30 -0.50 q_ R 0.87x10"%g_ Rn
0.50 -0.50 q_ R 0.92x10"*q_Rh
0.70 -0.50 q_ R 0.94x 10" % q_ Rh
1.00 -0.50 q_ R 0.97x107%q_Rn

0,235

diff. 0% diff. 9%
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It is clear from the table above that ’\/Igz) and Ngg) are almost uniform

along the crack. Therefore we may choose

“Lu) R
--—cﬂl— = 5.50 E"

) -

Dmem o _earxiv g, RA
CD

Returning now to the stresses along the crack prolongation, for example

the normal stress g _(X,0), one finds using 4.60 and 4. 64 that:
Yiotal

«:‘3 (x o)l =~ ..._.h_._.._.., A.+(o|s+ooa-&-. 31"}
veg

Jax-o/
(6.8)
+_E'.ﬁ__..__{l. (oak.\-O-lB-&M h‘-.‘
NEXEEOVA B
which for A = 0.98 reduces to:
€ (Ro) = Lo o1} % L2t}
ng 1°) J-E‘E‘T“ ii } alx-‘ /,:_ { !
(6.9)
where
g = b  mo - "applied bending"
o
g, = e = "applied stretching"
o 4.
And for our particular example, we can associate
Z"t“)z—o.s's xio™3 fo¥ ~-o0.00l i‘-"E?‘— (6.10)
h
€, = a.50p %o (6.11)

From equation 6.9 we see that the initial curvature will increase the

applied bending stress by approximately 7% and the applied stretching
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stress by 27%. One deduces therefore that the critical crack length
of a shell decreases with an increase of X\ or a decrease of radius of
curvature. (See next section.) In this particular case it is found
that the direct bending stresses are negligible compared to the ex-

tensional ones and the combined stress is

e ('I,a)\ ~ 0,44 %ok - U.64 m %-OR (6.}.2)

Ly (8D T mawy %

and similarly

&y (x,o)\ ~ oedlcl foR {6.13)
tokad v= ‘IS \Jm +
where, based on the Kirchhoff theory, the two-dimensional "hydro-
static tension" nature of the oy and UY slresses predicted for flat

plates is preserved. Finally, the corresponding strains are

LS
Ea(x,a) x 0.30 x"‘ll J%:& {6.14)

€ (®,0) = o.30 ‘_":_, $oR {6.15)

N < 3 E‘E’



-3
CHAPTER Vi1

GRIFFITH'S THEORY OF FRACTURE FOR CURVED SHEETS

As is well known iﬁ fracture mechanics, the prediction of
failure in the presence of sharp discontinuities is a very complicated
problem. Some work has been done on flat sheets, based on the
brittle fracture theory of A, A. Griffith [11]. His hypothesis is
that the total energy of a cracked system subjected to loading re-
mains constant as the crack extends an infinitesimal distance., It
should of course be recognized that this is a necessary condition
for failure but not sufficient.

Griffith applied his criterion to an infinite, isotropic plate
containing a flat, sharp-ended crack of length 2¢c. We shall now
proceed to obtain a similar, but approximate, criterion for initially
curved sheets based upon only the singular terms of the stresses,

The basic concept for crack instability is

-%LUM = © (7. 1)
C

where the system energy is defined by

Syadaum = U;_,M),“a + Uﬁ\-m *-Usmﬁam (7.2)
The applied stresses are held constant so that
Visg = V- % S?(cguﬁwrhun):\? (7. 3)

where U0 is a reference constant energy, and the integration is over
that portion of the outer perimeter where forces act to cause dis-

placements. The strain cnergy is
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L =_\a..gv“ (& &y * Vg 85”1* “u E.,_L) dv.e. (7. 4)
Us\m‘m x (25 +p& + 4ck) (7.5)

It may be shown that the surface area S of the shell faces and the outer
perimeter P of the shell are independent of the crack length.

Therefore 7.2 may be written as

Usﬁ*mz-_ U, + a4y -P-\.c-&: (sgwg T ’Tgoo\?

*'-'lfi Q ( 6p By ¥ Tyy g, * G & \ dvet,
Vo

or {7.6)
Uﬁ‘ﬁ&\'% = U; '\'46*::. —
2, Koo
. .
B )i‘:‘.‘j:o ;6 SZ SgS Ty (s,: ‘\ (65 ,)*(11“)} dedodt
e e
where U(; = UO + ‘)f* h_

(24 + Ph), Z, =2

- ,ZZ=ZO+ - a.ndA a
radius to be determined (see fig. 3)

In the above we have defined

SRRIUSCRIIE SR ey o

Z. = {w- (R—%)

with 6 the height of the shell segment.

Integration of 7.6 with respect to 8 gives



A
! Za
< = U +43ch - Lm =00 % I . 4r¥4dZ (7.7)
SYsiew 28 2 '
4, t
where
B A OO R O B [CRON N ORI (7.8)
with
K 4k, = EZ _a Pe 2 R (7.9)
a > ok (-») T vy o
Ke-%, =—EZ I3y § _ L B 7.10
= acr -y o 34 os ( )
Ko-ky=- B2 B 0 By (7.12)

Clay) ace R e
And since we are restricting ourselves to the singular stresses, it is
only fair to derive a Griffith criterion applicable in the immediate
neighborhood of the crack tip, where because locally the shell is almost
flat, we can replace without much error the limits of integration zl and
2.2 by -1% and 1% Thus 7.7 may be approximated by
2, N

) g I, de'd vz (7.13)

VU | = U vayel. Lim _&g
-4
EY

Sy E-»e RG

and after integration



— F N 3 and r 3
.&n .‘_-E_(-'-E"-u)i vz (2 B\ g
3G [ vw N\ A ewmy/ 3N R L (7.14)

4 Yregyras E 'Pto C&)
3 Cr-pa)?

which in the limit, as R — o and 0, ™ 0, in equal biaxial tension gg

along the periphery of a flat sheet, must equal to (see ref. [12])

U

-1 ¥ S{ —_— Y —
5'51\'10-\2 "\Ju + AY Ch o~ :—q—;— ({R"i) Geg == -‘;ﬁ-c;-& L3- R) G-C (7. 15)
Thus we have determined the value for Aﬂ<, namely

A¥ = lewc + 6 (v S (7.16)
Q-7 q4-Tv e

*
Substituting in 7.14 for A and applying the basic condition 7.1, the

frecturce criterion is seen to be;

ay¥p - nc {sauv-‘wl L ER To &3 -

246 | (-vi)r a4 e e
9-1 %l
L 2o 16y = ©
2 G4v) -Lc_a‘\ q4-1¥ (7.17)
where
P 4 & { lez\ave | 430 (y, 4. 3__\}
VT RO (a-v) 32 A i
(7.18)
sy A <O D 223 52} 40 (R
6L (4-¥a)d 32 4%
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and

& e E 2R 4 5
Bom T2 fuvan 2} 2R & 08 43 a2} 4 0% (7.19)
TR i 32 ml* G X (4-¥o) { sty -\+ G \)

Finally introducing 7.18 and 7.19 into 7.17 we arrive after some re-

arrangement at:

(34 -yuday AZ3¥Ye A2l B O 4 =3
(e 22 S+ 35 (e w) &

3 (2-12) (4-vo)* ‘e 4-Vo (hid
-\-[- = L‘a___‘_‘auu-ni) = Aoz | a-3ve. L ho3Ve 5l AN g (7-20)
ioyiee (,‘\-‘1»)(4-\&)*( 32 T g & P re

_sv ’ty‘ _-&.‘3— WE s o= regXY
14Y (4~ Vo)( E* 4-)] €. ne
which, for the case of g flat sheet, i.e. N\ = 0, reduces to the follow-

ing simple form:

Mo R Tl a -—fa-?é-- = (&) (7. 21)
For v = % equation 7.20 becomes
0.29 (1 0.12%) 5:\- + (4+ o.59 ’)\.‘) Et.a
- (0.-*\::.-1-0.1‘\-9»\3&.)'):l € 6, = ‘55 x (\G’ *) (7.22)

which clearly represents a family of ellipses. In view of 7.22 we can
obtain a relation between the critical crack length in a shell and the

critical crack length in a plate, i.e. for v = %

(:Qc\:.j [O 9 E‘uha “+ E@a] ?w L‘Qr_-;,) P aJn, - (7. 23)
et Toat(rom) B + (705900 B0 n L1YR 4




for example if A = 1 and (4, ) = ('o?b)S = (Er"e)s = ("&“G)P, then 7.23 reduces

to:

)

U =076 Cedey, .28

This clearly shows that the critical crack length for a spherical shell
is less than that of a flat sheet, and as is seen by 7.23 the ratioc de-
pends upon the curvature. This agrees with the statement following
equations 6,10 and 6.11.

For the special case where (0. ), = (0, )g = (3 )¢ = (o)

p We
obtain the following expression
.!.,) 1
Y (7.25)
(-J'? we A+ (o.16= 0l b 34_)};

This ratio is less than 1 for all A < 17. We conjecture that for » > 17
the same character will possibly be preserved, but more terms, say
up to 14,would be required to verify this point. As we have indicated,
however, (see sect. 4, Chapter 4) for most practical cases \ is less
than 2 hence 7.25 gives a good approximation. A plot of equation 7.25
is given in fig. 4.

Returning to equation 7.22 we note that it can also be written

in the form

-— 2 -—
(\‘\'D.S"?’).a) (5_;,_, -— (0.4-2-!-0-\1'-0\-\.3—)%& Ee .Fﬂ-)'i-
6;"’ < ,;;* G‘;‘

= \ R
+ 0.29 (1+ 0.12%%) (%) =
c‘t

{7.26)
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This obviously represents a family of ellipses, which are plotted
for different values of the parameter \, see fig. 5. For X\ greater
than 1.5 we will need higher orders of A for the determination of
the ellipses; therefore for A = 10, 20 we show just the intercepts.*
It is also clear from fig. 5 that the applied safe load in a cracked
spherical shell decreases with a decrease in radius of curvature.
For example, if along the crack there is a residual load of equal
bending and stretching a flat sheet can carry, before failure occurs,

—

5]
up to a load of 0,88 (—:%) while a spherical skell characterized with
o

—

o
the parameter \ = 1 can carry only up to 0. 76 (—z-), i.e. approxi-
o

mately 14% lcss load than a flat sheet.

" Curve for \ = 2 follows the anticipated trend,
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CHAPTER VIII

EXPERIMENTAL VERIFICATION

8.1 Description of Experiment

To compare theoretical and actual behavior of an initially
curved specimen, a preliminary experiment was conducted., We
have considered a clamped segment of a shallow spherical shell,
containing at the apex z radial cut of length 0.46 in. The shell was
subjected to a uniform internal pressure Qq° and the strain &_ at
three different positions along the direction of crack prolongation
was recorded as a function of L The design of the experiment did
not permit a determination of critical crack length, furthermorc

the copper material is too ductile for brittle fracture theory to apply.

8.2 Preparations

The shallow shell segment was constructed by the method

L

of "copper electroforming." " 1its characteristics were h = 0.009 in.,

6

R=20in., 6= 0.4in., R_=4.25in., v=%, E= 16 x 10° 1bs/in’.

R
A hole of 0,014 in, diameter was drilled at the apex of the shell seg-
ment, and a crack was sawed with a jeweler's saw of 0.007 in.
thickness, Finally, the ends of the crack were smoothed by the
"diamond thread method,“** {(diameter of diamond thread less than
0.005 in,), In the process of drilling and of sawing, a wax backing

was used in order to avoid damaging of the shell, Next, along the

crack prolongation, three strain gages were attached on the shell

* See ref. [13].
*¥% A cotton thread impregnated with 6 micron diamond paste.
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to measure the strains in the Y direction {see figs, 6, 7). The shell
was cemented between two circular rings, with ﬁo = 4 in, as the inside
radius (see fig. 8}, Next the crack was sealed internally with two
layers of acetate fibre tape. The first layer was a squarc of 2 x 2
inches, and the second layer was a rectangular one of 2 x 5 inches.

The following table gives the gage factors and positions of the gages

from the crack tip.

Gage no. G.F. =Gage Factor X -1 NET
1 2.10 0.07 1.81
2 2,09 0.29 0.89
3 2,09 0.48 0.69

In fig. 9 we have plotted voltage vs. gage pressure, and
because the curves for small pressures were not quite straight lines,
a second run was conducted a few hours later. It gave better results
(fig, 10). The change between first and second runs is attributed
to warming up of the resistance gages in the electronic equipment
and "setting" of the strain gages. Even for the second run, the
curves are slightly curvcd at the origin. It is possible that the Lape
carries a small part of the load. In any case, we consider the slope

of the curve which is given by

= Lo = AE L
C sdope -————w*—-ka " &%Q (8.1}

where A,F. = amplifier faclor = 5

In view of this, we can compute the strains from

&, = 4 C % (8.2)
oxp TS5V @, F
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where P,S.V. = Power supply voltage = 6 volts (measured),
The theoretical strains were calculated from equation 6.14 and

the comparison with experimentally determined values follows.

Gage

No. Theoreticals C Exp. c, Esxp. ¢

1 o.msx107% g 3.03x107% 0.96x10"%q_ 2.42x107% 0.77x107%q_
2 0.37x107% g 1.70x107% 0.5ax107%q_ 1.37x107% 0.44x10™% g_
3 o.29x107% g 1.3mxa07? 0.44x107%q_ 1.15x107% 0.36x10" % q_

first run second run

8.3 Conclusions

In fig. 11, we compare the theoretical predicted strains with
the experimental ones, It is easy to see that close to the crack tip
the theoretical results are slightly lower than the experimental ones,
e.g. there exists an error of about 3% for the first gage. We recall
that in the theoretical formula we neglected terms of O(?\4}. This fact
could contribute to the difference, as well as the averaging effect of
the finite gage thickness. As we move further away from the crack
tip the theoretical values become smaller than the experimental ones.
This is to be expected, since now € is large and the non-singular
terme become significant. Our theoretical results were computed
on the basis of only the singular term and furthermore only up to
terms of O()\z).

While it should be pointad out that the bending stresses are
practically negligible for this particular test configuration, it was
found that on the whole the experimental and theoretical results

compare very well.
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CHAPTER IX

CONCLUSIONS

The local stresses near the crack point are found to be propor-
tional to 1/v€ which is characteristic for crack problems, Further-
more, the angular distribution around the crack tip is exactly the same
as that of a flat sheet, and the curvature appears only in the intensity
factors and in such a way that for R = w0 we recover the flat sheet

vehavior. A typical term is

Ll

¢ ¢ Sowsy ¥ L .
e ram | B =R w0 (] (8.1)

where the constant is a positive quantity. The general effect of initial
curvature, in reference to that of a flat sheet, is to increase the
stress in the neighborhood of the crack point. Furthermore, it is of
some practical value to be able to correlate flat sheet behavior with
that of initially curved specimens. In experimental work on brittle
fracture for example, considerable time might be saved since by 8.1
we would expect to predict the response behavior of curved sheets
from flat sheet tests.

The stresses also indicate that there exists an interaction
between bending and stretching, i.e. bending loadings will generally
produce both bending and stretching stresses, and vice versa.

It is well known that large, thin-walled pressure vessels
resemble balloons and like bzllouns are subject to puncture and
explosive loss. For any given material, under a specified stress
field due to internal pressure, there will be a crack length in the

material which will be self propagating. Crack lengths less than



-45-
the critical value will cause leakage but not destruction. However,
if the critical length is ever reached, either by penetration or by the
growth of a small fatigue crack, the explosion and complete loss of
the structure occurs. This critical crack length, using Griffith's
criterion, was shown to depend upon the stress field, the radius and
thickness of the vessel, as well as the material itself (see 7, 20).
We were also able to obtain a relation for the ratio of the critical crack
length of a spherical shellto the critical crack length of a flat sheetl
{see eq. 7.23). In general this ratio is less than unity, which again
indicates clearly that a cracked initially curved shell is weaker
than a cracked flat sheet subjected to the same loading.

In conclusion it must be emphasized that the classical bend-
ing theory has been used in deducing the foregoing results. Hence it
is inherent that only the Kirchhoff equivalent shear free condition
is satisfied along the crack, and not the vanishing of both individual
shearing stresses. While outside the local region the stress distri-
bution should be accurate, one might expect the same type of dis-
crepancy to exist near the crack point as that found by Knowles and
Wang [7] in comparing Kirchhoff and Reissner bending results for
the flat plate case [8, 9]. In this case the order of the stress singu-
larity remained unchanged but the circumferential distribution around
the crack changed so as to be precisely the same as that due to solely
extensional loading. Pending further investigation of this effect for
initially curved plates, one is tempted to conjecture that the bending

amplitude and angular distribution would be the same as that of



stretching,
Finally for a clamped spherical shell, the experimental and
theoretical strains sy, at three different locations along the crack

prolongation, compare very well,
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APPEN DIX I

1. Table of F.C., Transforms:

We list below the following integrals which are useful for the

. A b % s
evaluation of the kernels Ll . LZ’ L3, L4

j“‘ E-J T5E AT il
P ‘[5"— PO

S“ SR
e

[+]

s s ds = K, (v4e)

wsgsds = 2B K. (ne)

U Fopa Y
- S 5 & cps(s CLS = M K ('\ee‘)

r AR {.g;‘;“ﬂ‘) K‘s, (,"’\Q'E)

g
ok e, - ‘lsz_')\"-d‘l- Isi
- Vs ™ Na™ € cosZsds = (AL _abluk
SB < (% o3 )R‘me)

2,31 /
22 B0 1 (ee)
Y

-]
S TNAgE e l“z'?\‘ﬂl sl

-’ﬂ?{a‘-ﬂﬁ X, (ve)

{1

(2)

(3)

(4)

(5)

(6)

singsds =2%@:_§_(g'33m‘) .08¢) (1)
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0 SN a
T T s e

(8}

2. Table of Proper and Improper Integrals

Another set of integrals which are used in Chapter IV, section

5, are (where Ix[<1);:

i
a
b

(9)

i
¢ BV g -5 ag
-1, x=-%

1]
3
("‘\
X
|
‘J(
n.../

Ya
C.BV. S‘ g\_-gl) A-g

o (10)
| 2 5/1
c.?.v.g _(%%_ dg = n (‘—‘E-x-—f:x*'—ws) (11)
-
j V-8 (x-%) A 11\;_‘51 dg = ___(\+ -&«*z“a)x
(12)
3
+ X
—e\3 N bx-F) a
I T8 g e 2208 g < (- p 24 )
(13)
D3 nx’?
4 20
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To evaluate 12 proceed as follows, First define
Voo—
= M
T(x) :.-..S Vi-g* (x-3) -@»1[..5- lx-;l] bg
which is continuous and bounded for all -1<x<1 and -1< £ <1, For-

mally, upon differentiation with respect to x
; '
1 = & {--3* { S mv.\{s_‘}\- LK g
-\

‘ﬂ?j{m ?41]4,5 = 1 +1(x)

- t
'5:‘*8

-

where

\
T.(x) = PRV & Ji-ge ,QMP.L}:—;\} i
Next differentiating Il(x) once we obtain
i 1 r‘-'ﬁ
I, = S Jdi-xz dr = nx
-1 n=-%

Integrating once gives

I\(x) = nxt + T, (»)

2
where
\

. = { {TZ5F 4 23 S P B P 1. S

LLL°) 8_] ‘T % Y A‘g 4 * = <
and hence

=N oo RNV
T () 4[\*..& ‘clx—b x> + T (e)

where

1 ()

\ e mrmnem
_S 4‘_,€3- § ..‘e,,\']ﬂ‘\a‘!\ A's =0
1
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3. Some Integrals of the Bessel Functions Jl(s)

Below we list a set of integrals which are used in Chapter IV,

section 7.

" " -~
S ]‘CS) e-b\‘“ LoSXiAS = Rg% '3‘(5-) e:«'*\."‘ﬂ "-_\

=,.._1-..— 1<)
NEw Rt
» siy)
LI ™M sinneds = - e
o ~ skl 1
T —— e g
lg\in 33.6) e Cos XS DS e ic.ns.i_ ws_i@.]
]
~5lul
\3&53C56 : S = - E‘P_-‘S_Q
\° 1 (5) sv\xsa YT mv\z Ln a__]

4. Properties of the K {z)

K, (2) = - ¥, (2
Kold) = -K\(2) = K, (2) + Ku@®
-1

For small arguments z the expansions are;

Ko(a) = (ko2 BY [ r() % 2 (@]

2 4
Gamrige® ~o (2% Ane)

{14)

(15}

{16)

(17)

(18)

(19)

(20)
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K‘ (2) = —“E * (g+ Hn %—) ["“:' ""('f_' aI-aL_.I N &13—)51.:-&‘-3-_\
(21}

@R @ @0 ETn).
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APPENDIX II

On the Solution of Singular Integral Equations
For simplicity, we will consider the case of a single singnular

integral equation of the type encountered in Chapter III, sect, 5, i.e.

S_ll { s *‘«18(":%)} wig) dx = mox <t (1)

%%
where g(x,£) is continuous and bounded for all x and £ and furthermore
symmetric, i.e. g(x,£) = g{f£,x) and g(x,x) = 0. Egquation |l can be
written in the form

i

wixy -
)., el S (2)
where
}
LX) = wox- 7&& 9 00%) wix)dy (3)

We next seek a solution to equation 2 such that it is bounded [ -1,1]
and is Holder continuous for some positive Holder index (THN
Following Muskhelishvili [6] §47, the solution can be written

in the form:

e
= b [1ax M-t 4
Wiy = |H' L{m -5 dx (4)

or substituting for £f(t)

Wiy = b Aex =t ot Ak (5)
n= X i+t E-x
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which after some rearrangement can be written in the form:

It

To z
—— -
= X

1 \ i
e AR R ERTOE
(6)

Using the Poincar€-Belrand (ransformation formula we find

\ L \
dx> - ; w - & " \~
x r.m i S_‘%“.“ 5} dr ]%—18 Lﬂ\%%@&&&i

= s R e &

which substituted in 6 will give

w () + :%S w(5) Kixg) dg = me [ (7)

i.e. we have reduced the singular integral equation 1 to a Fredholm
integral equation of the second kind, where the kernel K(x,§) is a
continuous and bounded functior of x and £,

We will now seek the solution of the integrzl equation
\
wlxy = _“_‘Jﬁg o-x* - .'2\_; S wig) K (%,%) ng (8)
n

by the method of successive approximations. For the zero-order

approximation let us take the right-hand side of equation 8 namely
LV 9 » - o -
vl 3 - A (9)

substitute into 8 to obtain



3
X (10)
1
= Mo T - Mot [ax !J::E...‘l;k_ -%* 2{4
n i 'ﬁ'l\ - S_\ e J:—K%_‘“ Jusddy
and in general
N am
w = Mo - — e, 5 gt 11
WO =2 [ X= s 3;‘ L_n’“‘x K-m‘(“*?’\ Jimg & d (11)
-\
where K(n) (x,£) is determined from the recurrence relationship
\
ku) (."‘"a'g) = RW(,E) 3 \ﬂm(‘h’%) "—'-'S_\KU\,‘E) i‘t\‘—‘)(‘h%)&k (12}

Assuming that the successive approximations do converge, and pro-
ceeding to the limit in equation 11 we obtain a solution of the integral

equation 7 in the form of an infinite series

" |
o [z i) A -
e -z QY] en L
-t
These successive approximations do converge uniformly for all values
of M lying inside the circle [a 12 s —]13- , where"

1 .
= § e eemt el

e U T (TR sl 402
N4 S_‘S_l \J%S_JL" ;g At\ dxdg

| I+t X

*H the kernel is also a function of A, then B = B(\) and therefore the
solution of the inequality

2 1

Ini© < BOT

will give us the radius of convergence.
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The limit of the successive approximations is the solution of equation 7
and this solution is unique. * Furthermore, if in the series 13 only those
terms are included which contain powers of \ up to the 2n-th, then the
magnitude of the error will not exceed
| 2 mea -~
b~ 8

p 1

L]

In particular if

s00%) = 3R = 4 (@) = -y SR H)

{11)
3 L
- (g 2 kopk) + & |-
which when expanded for small arguments gives
| STy
(15)
¥ 0 ('\‘ Lx-i}q-ﬁh\'\‘&'ih
and therefore the integrals
I
Tw=| " e dt =
Y - 3
R (A o0y

i

C kb rac, £ ro(n?)

*For a proof of this theorem see Mikhlin [14], pp. 7-13.
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A T ac\ =5 2 acsopy)
-1 e -x

c,n (=%} * G -x) (423 + 0 ()

=m0 [orcn Grae) |+ o0 (i7)

from which

W, (xy =~ % i ~ ""‘0"\ N-x= [C +c.=_(\+a.x")}+ 0(}\")

-z T | e e v G ] o )]
(18)

O a
- Mg - Xt { A - T n _ 3 C :'-h 2'...(. -X" + DA
= N o n L = 2 A (.\ \ ('\ )

= ~wg Jloxr { A v+ b, (1-x2) + o(hz)]

where

A= s Zos3x 2 aanter 0 () {19)
\ ? L3 e

(20)
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Next we will show that if in equation 1 we zssume a power ser-

ies solution of the form:
w, () = iox< StP:f-s-)\“&:(u-x")-\----} (21)

the coefficients will be identical to the cnes obtained by the previous
methed, which indicates that the two methods are equivalent, Sub-
stituting 21 into 1, integrating and equating ccefficients on both sides
of the resulting equation, it is easy to show that Af = Al and so omn,

In 2 similar fashion this can be carried out for coupled integral equa-

tions. In Chapter IV we encountered two coupled integrals of the

form:

\ \
3_ w, (5) -_u;w‘) de = mox- «)35 g, (%) wilE)ds
‘ (22)

~w s gl e

W (8) +4: (5) At = Fhox— q’-&_‘l 9, (8) wi(m)

-t -

\
=X\ T8 W) d3 e (23)

where the functions gik(x, €) (i,k = 1,2) are to be continuous and bounded
for all x and £ in the interval [1,-1].

For convenience we define

3 \
o=y & B (ai8) w343 *1‘8 4. () uy(s)ds (24)

sa(.\c\ = Vg% - }\‘—gi %u(,lﬁ}ﬂ-l L'E)tlg - :\‘-S b n.(xag\) \La(’g) Ag (25)
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Thus equations 22 and 23 can be written in the form

%‘ u;(%\,;u-ga.f,il rlg - Yhug

(26)
D (B) vuals)
WE) tUa(S
| o dy = Lo (27)
- )(..'g
We seek for solutions to the system such thai they are bounded in
[-l,l] and are Holder continuous for some positive Holder indices
pq and p,. Again following Muskhelishvili [6] the solutions can be
written in the form
ni
W, (x}— DL;(:Q w 1A \ -t __.._.:H‘ 5 ‘H: (28)
il e T R
v ey i
W) U0 = L [Ex S -t SO
(<) ) w e ) e e 4 (29)
Substituting for fl(t) and fz(t) and integrating the following equations
result
\.L‘Ly.)—ua_(x\ =.r_“_‘3\_°.. ,l [ "X" ‘ \-\-x \ S l\'::: { %m (})S\ u\Ls)\loS
(30)
i
M NCUINGE S
O HU0) = . [T 2 ?E FE{ 3 (48) u (5) dg
A\ —-X x¢
(31)

SENC O
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We thus have reduced our problem to the solution of two Fredholm
integral equations the solutions of which we will seek by the method
of successive approximations. As before for a zero-order approx-

imation let us take the right-hand side of equations 30 and 31, i.e.

32

Wy ) - o) = e [T (32)
- ":"12. -

Wio (X) + Va0 (xy " Ji=x (33)

and so on. The theory, and likewise the method of solution, of SYys-
tems of integral equations, are just the same as for a single equation,
Thus successive approximations converge for small A and in particular

if X\ satisfies the inequality (see ref. {14], pp. 30-31)

L

' ——y -4
r\‘-‘- < ')\*1 < AR i Jgﬂ&\ \ ki.\((-‘is)\t Jauls}

jELEm K=

where

i
K= L [T S S%‘ g (5,5) u, (5) —:‘f—;

¥

In our particular example the functions 81 BTre of the form:

3,0 73,0973, (2) = -2 8 o ona) -
(34)

-REL L 2N 20 1A
tM‘las‘l T th\) K Oz 53.} 4
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S0 (x)'s) = 3“0(-'5)33“ (g'j z -2 i- neZ K, (?@{IQ)

®ar | &
(35)
IRV & (! K, S I U
e iz 21z (etiz) + .;a'l z
= -E\ = = . 2 _voapt -V 74 A
a9 =3, 69 =5, (2) R @) i “55 Keekal - (% IZI+§%'I+%{%
(36) .

2 e o T L
¥, Lxe\g'\)- X P‘x"‘% k\(hga\Z\) +%"; - __2__} - ?

- . _ 2 _ Y AN _ 3 2 M
Gaa (013} = §2,05) =3ﬂ(;) = qa.p@.-vg)i 7 Ko{aiz) u(x’xél*r a7 zm)

{(37)

K, ORAZY) - a A, (atz)+ 224 - AR L L
ORAZ) - w § \é’\KO“ y{d {k 3

The successive approximations follow the same pattern as for the single
integral equation. It is an easy matter to show that the coefficients ob-
tained are identical to those obtained by the method employed in sect, 5,
Chapter IV, This thercforc cstablishes the equivalence of the two

methods,
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APPENDIX II1

Sorme Details for the Antisymmetric Problem

1. Caseofv = 0,1 + 0;
o o

Following exactly the same methoé as in Chapter IV we list

below the successive steps:

Qa R (QS— Qs)
vos‘a. Q’; - { (‘gnsz—i.}"") Q:‘ +kvnS"+i.)f'3 Qs\

The continuity conditions are eatisfied if wo take

oby
S 85  wsxsds =o P \ry >
-
Q¢ tosxsds O Yo Wy o
8

-]

which by inversion give:

Qs

_ﬁi S W, (5) coszs A%

Qs 22§ () e dy
where
W \ Rs sx As : LS WA
s()'.\:: . —5—-- <o H
\ .
Mo (X) = S Be cosxs A3 » oAl
o 3

In view of the above the corresponding singular integral equations to

be solved are:

_iXed g‘ ﬁv-s(!»\ M, - MR, (;ﬂ d = ~kox  ; 1wi<d

nc*

"';:T S:' { “'3“\“3 +u,\(_g) Hq" J"S‘ o ) i<y
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where the kernels Ml’ MZ' M,, M4 are defined by

=-28 kg, oy 2
e g O 3 e 4

P L R GV GNP\ G- I
27 B OE) s X O« 2

M = o*a? 6V MZ‘_cafn?\{iK‘ )
N T;% K, (38121) {44--——{3;— =i (1<)

3}’,’4\‘ * Yo > gd
- _FL Ko Onpizi) - 222 K (4120

My = 2Ry ez + S 4 B0 e ¢ (i)
(2 S 7 st

- Vet Ko (1.”{\\ - .Ei.ﬁe-(—a Kabﬂi‘Zl\)
s P

which for small arguments can be expanded as:

M =2 2 52 M sy + 0 (2 27521

2 4 - & w3 A
Moz B 4 2007 28 (ue 0208 4 O (%27 2nizy)

== Mot 3t (%t W) e \ Vs |z
My = Y- Ty g * -85— (4+ve) (Xf%}%i‘).‘.u (3 Az iT)

My =-rledt a3 2y HE () (pe b 2+ 0 (085200121
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Following the same method of solution as before we obtain

L

o
bt = ® T A T (T

Wa (X) = Va-x¥ By N Gext)™

3 Mg

where again we find:

™ g k3
A, 43, —--'3-%3:-;‘-': {.L-&--T%—Eﬁ- + OU\‘)‘\

K, -

o
I

-

= Ledta2 {%,3+4(4+v3)_x% 43V 5 N 1—0('2\5&4\\}
ALRD VoW, gk e

2. Casecfiv #0,t =0
o} o

To clarify the poini made in the beginning of sect. 1, Chapter
V, we elaborate, The integral representations for v, ¥ 0 and t, = 0

are

2 Q, e } Lorx3d 3

n® s saam gt ~siul
{(}gl e + Qe “+
-]

o .
iy _Js"Jri'ka'l'“ gl 0
F::LXKEDX{Q‘G‘. -Q, ¢ “ ‘re_s" !'CASXSAS
[ o

Again following the same method we list below the successive steps:
Q4 = - (Q|_ Ql\
vt @y == {0est-R) & (52 @, )

i

The continuity equations are satisfied if we take

L]

g D osxsds =o M ST
o Sl.

)

S 8 wosxsds = o y Wb

) 5¢
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which by inversion give:

Voo
Q, = 3,.-'3_1.8 %, (3) cosgs dF

e}

\
Ql = _2?313_ \ E’z(-") wsE S é»'g

In view of the above the corresponding singular integral equations to
be solved are:

\

M_E.E_S S\C{\L.l-.ﬁfz_\_;}&;g: o AREIES
na

V ~ ~
g u| L3+“LL*} A‘g = 'Do ; ‘\X\Q\

-'."'_--\
iyl

-\

where
« for o feoma Il "
al, s S {S‘ %ty e - st .:-3.5] flh atn(_x—gbsrls
o

[ _lt'-ll' :.'\\-3\ Y
alb. = g {5335‘_.%‘,3.4 il 4 — 9 e's“},uwh-s)sc\s
Y

a

o ISR ! ~siw
2\_3 = S {(Vps‘ui‘) -y ste " o 5‘(V°5L“L\')€- } o3 {x-3)sds

[+

o . _fstro iyl
2l = gu { LVos-ta")Js“H)\'- st e ~ 3 (ras™eixE 5'5\"\‘} b (x-d)sds

Next we must write the kernels 1., and L. in the form 8 {@, Jyl}
1 2 a‘{z

and then take the limit as |yl = 0 to recover the required singularity

ﬁ . Unfortunately, we are unable to find this function &(x, |y ) in

a closed form.
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FIG. 3
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FIG. 4 - RATIO OF CRITICAL CRACK LENGTHS IN A
SPHERICAL SHELL AND IN A PLATE VS.
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Fig. 6. Photograph of shell after testing.
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