1.11 Equilibria

MATHEMATICAL TECHNIQUES

♠ Solve the following equations. Check your answer by plugging in the value you found.
- **EXERCISE 1.11.1**
 \[2x + 3 = 7. \]
- **EXERCISE 1.11.2**
 \[\frac{1}{2}z - 3 = 7. \]
- **EXERCISE 1.11.3**
 \[2x + 3 = 3x + 7. \]
- **EXERCISE 1.11.4**
 \[-3y + 5 = 8 + 2y. \]
- **EXERCISE 1.11.5**
 \[2(5(x - 1) + 3) = 5(2(x - 2) + 7). \]
- **EXERCISE 1.11.6**
 \[2(4(x - 1) + 3) = 5(2(x - 2) + 7). \]

♠ Solve the following equations for the given variable, treating the others as constant parameters.
- **EXERCISE 1.11.7**
 Solve \[2x + b = 7 \] for \(x \).
- **EXERCISE 1.11.8**
 Solve \[mx + 3 = 7 \] for \(x \).
- **EXERCISE 1.11.9**
 Solve \[2x + b = mx + 7 \] for \(x \). Are there any values of \(b \) or \(m \) for which this has no solution?
- **EXERCISE 1.11.10**
 Solve \[mx + b = 3x + 7 \] for \(x \). Are there any values of \(b \) or \(m \) for which this has no solution?

♠ Find the equilibria of the following updating functions from their graphs. Label the coordinates of the equilibria.
- **EXERCISE 1.11.11**

![Graph 1](image1.png)

- **EXERCISE 1.11.12**

![Graph 2](image2.png)

- **EXERCISE 1.11.13**
1.11. EQUILIBRIA

- **EXERCISE 1.11.14**

![Graph of a system](attachment:graph.png)

♠ Graph the following discrete-time dynamical systems. Solve for the equilibria algebraically, and identify equilibria and the regions where the updating function lies above the diagonal on your graph.
- **EXERCISE 1.11.15**
 \(c_{t+1} = 0.5c_t + 8.0, \text{ for } 0 \leq c_t \leq 30. \)
- **EXERCISE 1.11.16**
 \(b_{t+1} = 3b_t, \text{ for } 0 \leq b_t \leq 10. \)
- **EXERCISE 1.11.17**
 \(b_{t+1} = 0.3b_t, \text{ for } 0 \leq b_t \leq 10. \)
- **EXERCISE 1.11.18**
 \(b_{t+1} = 2.0b_t - 5.0, \text{ for } 0 \leq b_t \leq 10. \)

♠ Sketch graphs of the following updating functions over the given range and mark the equilibria. Find the equilibria algebraically if possible.
- **EXERCISE 1.11.19**
 \(f(x) = x^2, \text{ for } 0 \leq x \leq 2. \)
- **EXERCISE 1.11.20**
 \(g(y) = y^2 - 1, \text{ for } 0 \leq y \leq 2. \)
- **EXERCISE 1.11.21**
 \(h(z) = e^{-z}, \text{ for } 0 \leq z \leq 2. \) (This cannot be solved algebraically).
- **EXERCISE 1.11.22**
 \(F(x) = \ln(x) + 1, \text{ for } 0 \leq x \leq 2. \) (This cannot be solved algebraically, but you can guess the answer).

♠ Find the equilibria of the following discrete-time dynamical systems. Compare with the results of your cobweb diagram from the earlier problem.
- **EXERCISE 1.11.23**
 \(v_{t+1} = 1.5v_t, \text{ (as in exercise 1.10.11).} \)
- **EXERCISE 1.11.24**
 \(l_{t+1} = l_t - 1.7, \text{ (as in exercise 1.10.12).} \)
- **EXERCISE 1.11.25**
 \(x_{t+1} = 2x_t - 1, \text{ (as in exercise 1.10.15).} \)
- **EXERCISE 1.11.26**
 \(z_{t+1} = 0.9z_t + 1, \text{ (as in exercise 1.10.16).} \)
- **EXERCISE 1.11.27**
 \(w_{t+1} = -0.5w_t + 3, \text{ (as in exercise 1.10.17).} \)
• **EXERCISE 1.11.28**
 \[x_{t+1} = 4 - x_t \] (as in exercise 1.10.18).

• **EXERCISE 1.11.29**
 \[x_{t+1} = \frac{x_t}{x_t + x_0} \] (as in exercise 1.10.19).

• **EXERCISE 1.11.30**
 \[x_{t+1} = \frac{x_t}{x_t - 1} \] (as in exercise 1.10.20).

APPLICATIONS

★ Find the lung updating function with the following parameter values, and compute the equilibrium. Check that it matches the formula \(c^* = \gamma \).

• **EXERCISE 1.11.31**
 \[V = 2.0 \text{ L}, \; W = 0.5 \text{ L}, \; \gamma = 5.0 \text{ mmol}/\text{L}, \; c_0 = 1.0 \text{ mmol}/\text{L} \] (as in exercise 1.10.21).

• **EXERCISE 1.11.32**
 \[V = 1.0 \text{ L}, \; W = 0.1 \text{ L}, \; \gamma = 8.0 \text{ mmol}/\text{L}, \; c_0 = 4.0 \text{ mmol}/\text{L} \] (as in exercise 1.10.22).

• **EXERCISE 1.11.33**
 \[V = 1.0 \text{ L}, \; W = 0.9 \text{ L}, \; \gamma = 5.0 \text{ mmol}/\text{L}, \; c_0 = 9.0 \text{ mmol}/\text{L} \] (as in exercise 1.10.23).

• **EXERCISE 1.11.34**
 \[V = 1.0 \text{ L}, \; W = 0.2 \text{ L}, \; \gamma = 1.0 \text{ mmol}/\text{L}, \; c_0 = 9.0 \text{ mmol}/\text{L} \] (as in exercise 1.10.24).

★ Find the equilibrium population of bacteria in the following cases with supplementation. Graph the updating function for each.

• **EXERCISE 1.11.35**
 A population of bacteria has per capita reproduction \(r = 0.6 \) and \(1.0 \times 10^6 \) bacteria are added each generation (as in exercise 1.10.33).

• **EXERCISE 1.11.36**
 A population of bacteria has per capita reproduction \(r = 0.2 \) and \(5.0 \times 10^6 \) bacteria are added each generation (as in exercise 1.10.34).

• **EXERCISE 1.11.37**
 A population of bacteria has per capita reproduction \(r = 0.5 \) and \(S \) bacteria are added each generation. What happens to the equilibrium when \(S \) is large. Does this make biological sense?

• **EXERCISE 1.11.38**
 A population of bacteria has per capita reproduction \(r = 0.5 \) and \(1.0 \times 10^6 \) bacteria are added each generation. What happens to the equilibrium if \(r = 0 \)? What happens if \(r \) is close to 1? Do these results make biological sense?

★ Find the equilibrium concentration of chemical in the lung in the following models that include absorption.

• **EXERCISE 1.11.39**
 The situation described in exercise 1.10.31. How does the equilibrium compare with \(\gamma \)?

• **EXERCISE 1.11.40**
 The situation described in exercise 1.10.32. How does the equilibrium compare with \(\gamma \)?

★ Find the equilibrium concentration of salt in a lake in the following cases. Describe the result in words by comparing the equilibrium salt level with the salt level of the water flowing in.

• **EXERCISE 1.11.41**
 The situation described in exercise 1.10.35.

• **EXERCISE 1.11.42**
 The situation described in exercise 1.10.36.

• **EXERCISE 1.11.43**
 The situation described in exercise 1.10.37.

• **EXERCISE 1.11.44**
 The situation described in exercise 1.10.38.

★ A lab is growing and harvesting a culture of valuable bacteria described by the updating function

\[b_{t+1} = rb_t - h. \]

The bacteria have per capita reproduction \(r \), and \(h \) are harvested each generation.
1.11. EQUILIBRIA

• EXERCISE 1.11.45
 Suppose that \(r = 1.5 \) and \(h = 1.0 \times 10^6 \) bacteria. Sketch the updating function, and find the equilibrium both algebraically and graphically.

• EXERCISE 1.11.46
 Without setting \(r \) and \(h \) to particular values, find the equilibrium algebraically. Does the equilibrium get larger when \(h \) gets larger? Does it get larger when \(r \) gets larger? If the answers seem odd (as they should), look at a cobweb diagram to try to figure out why.
Chapter 4

Answers

1.11.1. $2x = 7 - 3 = 4$, so $x = 4/2 = 2$. Plugging in, $2 \cdot 2 + 3 = 7$.

1.11.3. $2x - 3x = 7 - 3 = 4$, so $-x = 4$ or $x = -4$. Plugging in, $2 \cdot (-4) + 3 = -5 = 3 \cdot (-4) + 7$.

1.11.5. Multiplying out, we get $10x + 1 = 10x - 3$. This has no solution.

1.11.7. $2x = 7 - b$, so $x = \frac{7 - b}{2}$.

1.11.9. $(2 - m)x = 7 - b$, so $x = \frac{7 - b}{2 - m}$. There is no solution if $m = 2$. However, if $m = 2$ and $b = 7$, both sides are identical and any value of x works.

1.11.11. The equilibrium seems to be at about 1.3.

1.11.13. The equilibria seem to be at about 0.0 and 7.5.

1.11.15. The equilibrium is where $c^* = 0.5c^* + 8.0$ or $c^* = 16.0$.

1.11.17. The equilibrium is $b^* = 0$.
1.11.19. \(f(x) = x \) when \(x^2 = x \), or \(x^2 - x = 0 \), or \(x(x - 1) = 0 \) which has solutions at \(x = 0 \) and \(x = 1 \).

1.11.23. \(v^* = 1.5v^* \) if \(v^* = 0 \).
1.11.25. \(x^* = 2x^* - 1 \) has solution \(x^* = 1 \).
1.11.27. \(w^* = -0.5w^* + 3 \) has solution \(w^* = 2 \).
1.11.29. \(x^* = \frac{-1}{1 + x^*} \) has solution \(x^* = 0 \).
1.11.31. The updating function is \(c_{t+1} = 0.75c_t + 1.25 \). Solving for the equilibrium, we find \(c^* = 0.75c^* + 1.25 \), or \(0.25c^* = 1.25 \) or \(c^* = 5.0 \). This matches the value of \(\gamma \).
1.11.33. The updating function is \(c_{t+1} = 0.1c_t + 4.5 \). Solving for the equilibrium, we find \(c^* = 0.1c^* + 4.5 \), or \(0.9c^* = 4.5 \) or \(c^* = 5.0 \). This matches the value of \(\gamma \).
1.11.35. The updating function is \(b_{t+1} = 0.6b_t + 1.0 \times 10^6 \). The equilibrium satisfies \(b^* = 0.6b^* + 1.0 \times 10^6 \) or \(0.4b^* = 1.0 \times 10^6 \) or \(b^* = 2.5 \times 10^6 \).
1.11.37. The updating function is \(b_{t+1} = 0.5b_t + S \). The equilibrium satisfies \(b^* = 0.5b^* + S \), or \(0.5b^* = S \) or \(b^* = 2S \). The equilibrium becomes larger when \(S \) is large. This makes sense because the population will be larger when more bacteria are added.
1.11.39. The updating function is \(c_{t+1} = 0.75c_t + 0.875 \). The equilibrium satisfies \(c^* = 0.75c^* + 0.875 \) or \(0.25c^* = 0.875 \) or \(c^* = 1.75 \). This equilibrium concentration is much lower than the ambient concentration of \(\gamma = 5.0 \), due to the absorption.
1.11.41. The updating function is \(s_{t+1} = 0.99s_t + 0.0099 \). The equilibrium equation is \(s^* = 0.99s^* + 0.0099 \) or \(0.01s^* = 0.0099 \) or \(s^* = 0.99 \). The water ends up almost exactly like the water that flows in.
1.11.43. The updating function is \(s_{t+1} = s_t + 0.01 \). The equilibrium equation is \(s^* = s^* + 0.01 \) which has no solution. This lake has no equilibrium and will get saltier and saltier.
1.11.45. The updating function is \(b_{t+1} = 1.5b_t - 1.0 \times 10^6 \), and the equilibrium is \(b^* = 2.0 \times 10^6 \).