1. In the lecture we showed how to simulate a random permutation of length \(n \), and we wrote a program in True BASIC to do so (see below). This problem consists of rewriting that program in whatever programming environment you choose (Java, R, C++, Matlab, etc.), and illustrating your program by generating a random permutation of length \(n = 104 \). Print out your program code as well as your output, and be sure to state what language you are using. (Note: If your programming language has a “random permutation” feature, don’t use it!)

```
RANDOMIZE
LET n=104
DIM x(104)
FOR i=1 to n
   LET x(i)=i
NEXT i
FOR k=n to 2 step -1
   LET j=int(k*rnd)+1
   LET temp=x(j)
   LET x(j)=x(k)
   LET x(k)=temp
NEXT k
FOR i=1 to n
   PRINT using " ###": x(i);
NEXT i
END
```

66 75 93 56 29 54 85 10 67 81 15 78 68 76 50 92 96 17 91 5
44 77 94 24 53 18 82 71 88 42 70 57 97 89 33 59 43 2 61 35
64 20 14 19 102 101 26 8 87 98 37 65 1 58 7 84 27 72 62 30
63 49 13 23 51 48 99 28 32 79 39 6 103 36 104 60 47 95 22 45
74 100 41 31 46 90 11 40 52 69 25 83 3 80 34 4 9 38 12 86
55 73 16 21

2. Simulate the expected number of dice rolls in a craps game. (Rules: Roll a pair of dice. If a total of 2, 3, 7, 11, or 12 appears on the initial roll, stop. If a total of 4, 5, 6, 8, 9, or 10 appears on the initial roll, continue to roll the dice until you repeat the initial total or roll a total of 7.) Estimate the expected number of rolls required and calculate the standard error of your estimate. Sample size should be at least 1,000,000.