Solution to GOSSIP problem

If there are 2 it takes 1 call
If there are 3 it takes 3 calls
If there are 4 it takes 4 calls
for \(n \geq 4 \), \(2n-4 \) calls
so for 5 gossips it takes 6 calls

Basically if you put the \(n \) people at the vertices of an \(n \)-gon, then let the news travel around, the last two (\(n-1 \)) and \(n \) have all the news and must now distribute it to the other (\(n-2 \)) people. So the solution is (\(n-1 \)) calls to get around the \(n \)-gon, then (\(n-2 \)) to inform the rest of the last piece of gossip. So the total is \(2n-3 \).

Solution to the change places problem.

It can be done in 15 moves. It helps to look at a smaller problem.

Spaces to cover	jumps (2 sp)	slides (1 sp)	moves (j+s)
Take 1 on each side: \((2x2)=4\) | 1 | 2 | 3 |
Take 2 on each side: \((4x3)=12\) | 4 | 4 | 8 |
Take 3 on each side: \((6x4)=24\) | 9 | 6 | 15 |

For \(n \) on each side: \((2n \times n+1)=2n^2+2n\)
\(n^2 \)
\(2n \)
\(n^2+2n \)

For more information Google: Traffic Rush problems.

Solution to points on a circle

<table>
<thead>
<tr>
<th>Points</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>(\frac{n(n-1)}{2})</td>
</tr>
<tr>
<td>regions</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>31</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

The number of lines looks like a diagonal in Pascal’s Triangle, \(\binom{n}{2} \)
The number of regions seems to have a pattern which falls apart at \(n=6 \).

It is actually a quartic: \(\left(\frac{n}{2} \right) \left(\frac{n}{3} \right) \left(\frac{n^2-5n+18}{4} \right) \)

Solution to tower of blocks

Number of blocks: middle stack = \(n \)
Four side stacks: \(4 \times \) sum of \((n-1)\) consecutive integers. \(4 \times (n(n-1))/2 \)
Total blocks \(2n^2-n \)

\[n = 5 + 4 * 2 \times \left(\frac{n(n-1)}{2} \right) + 4 * 2 \times (n-1) = 4n^2 + 4n - 3 \]

\[= 5 \text{ sides of top block} + 8 \text{ lateral faces of sum of } (n-1) + 4 \text{ top and front of } (n-1) \text{ steps.} \]