1. Suppose that $A \ast B \ast C$ and $A \ast C \ast D$.
 (a) (3 pts) Prove that A, B, C, D are four distinct points.

 Solution: By B-1, A, B, C are distinct and A, C, D are distinct. The only pair of points that do not appear in both sets is the pair B, D. If $B = D$ then substituting D for B in the hypothesis would yield $A \ast D \ast C$ and $A \ast C \ast D$, contradicting B-3. Therefore $B \neq D$.

 (b) (3 pts.) Prove that A, B, C, D are collinear.

 Solution: Axiom B-1 and the assumption $A \ast B \ast C$ together imply that the points A, B, C are collinear. Furthermore, the uniqueness part of I-1 guarantees that these points all lie on line \overline{AC}. Similarly, Axiom B-1 and $A \ast C \ast D$ together imply that A, C, D are collinear. Again the uniqueness part of I-1 guarantees that these points all lie on \overline{AC}. So all four points lie on \overline{AC}.

2. Prove Proposition 3.1(ii): For any two distinct points A and B, $\overrightarrow{AB} \cup \overrightarrow{BA} = \{\overrightarrow{AB}\}$.

 Proof. Step 1 (5 pts.): $\overrightarrow{AB} \cup \overrightarrow{BA} \subset \{\overrightarrow{AB}\}$.

 Let $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$. The proof will be complete once we show that $P \in \{\overrightarrow{AB}\}$. If $P = A$ or $P = B$ then P is on line \overrightarrow{AB} hence in set $\{\overrightarrow{AB}\}$. Now suppose that P, A, B are distinct. If $P \in \overrightarrow{AB}$, then by definition of ray, $P \in \overrightarrow{AB}$ or $A \ast B \ast P$. Having ruled out the possibilities $P = A$ or $P = B$, if $P \in \overrightarrow{AB}$ then $A \ast P \ast B$ by definition of segment. Therefore $A \ast P \ast B$ or $A \ast B \ast P$. In both cases A, P, B all lie on the same line according to B-1; this line is \overrightarrow{AB} by the uniqueness part of I-1. Thus $P \in \{\overrightarrow{AB}\}$. By the same logic, if $P \in \overrightarrow{BA}$ then $B \ast P \ast A$ or $B \ast A \ast P$, and again P, A, B all lie on \overrightarrow{AB}, so $P \in \{\overrightarrow{AB}\}$.

 Step 2 (5 pts.): $\{\overrightarrow{AB}\} \subset \overrightarrow{AB} \cup \overrightarrow{BA}$.

 Let $P \in \{\overrightarrow{AB}\}$. The proof will be complete once we show that $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$. If $P = A$ or $P = B$, then $P \in AB$ by definition of segment.
$AB \subset \overrightarrow{AB}$ by definition of ray, and $\overrightarrow{AB} \subset \overrightarrow{AB} \cup \overrightarrow{BA}$ by definition of union, so $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$.

Now suppose that P, A, B are distinct. These points are collinear because we assumed that P lies on \overrightarrow{AB}. Thus B-3 gives us $P \ast A \ast B$ or $A \ast P \ast B$ or $A \ast B \ast P$.

- If $P \ast A \ast B$ then $P \in \overrightarrow{BA}$ by definition of ray.
- If $A \ast P \ast B$ then $P \in AB$ by definition of segment, so then $P \in \overrightarrow{AB}$ by definition of ray.
- If $A \ast B \ast P$ then $P \in \overrightarrow{AB}$ by definition of ray.

In all cases P is in \overrightarrow{AB} or \overrightarrow{BA}, meaning that $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$.

3. (14 pts.) Let A be an affine plane. Show that the projective completion of A, A^* satisfies axioms I1, I2+, I3 and elliptic parallel postulate.

Axiom I2+: For every line l there are at least three distinct points incident with it.

Solution: See pages 59 – 60 in the book. Although few more details could be supplied.