1. Compute the mass function of the random variable Y whose moment generating function is

$$M_Y(t) = \frac{1}{2}e^t + \frac{1}{6}e^{-2t} + \frac{1}{3}e^{5t}.$$

Solution: $p(1) = \frac{1}{2}$, $p(-2) = \frac{1}{6}$, $p(5) = \frac{1}{3}$, and $p(x) = 0$ otherwise.

2. Consider a random vector (X, Y). We know that X is exponentially distributed with parameter 1; i.e.,

$$f_X(x) = \begin{cases} e^{-x}, & x \geq 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let $x > 0$ be any fixed positive number, and suppose that conditionally on the event $\{X = x\}$, Y is exponentially distributed with parameter $1/x$. That is,

$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}e^{-y/x}, & y \geq 0, \\ 0, & \text{otherwise,} \end{cases}$$

Find the density function of (X^2, Y^2).

Solution: The joint density of (X, Y) is

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x) = \begin{cases} \frac{e^{-x-(y/x)}}{x}, & \text{if } x, y \geq 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let $U = g_1(X, Y) = X^2$ and $V = g_2(X, Y) = Y^2$. The Jacobian of the transformation g is $4xy$. Therefore,

$$f_{U,V}(u,v) = \frac{f_{X,Y}(x,y)}{4xy} = \begin{cases} \frac{e^{-\sqrt{u}-(\sqrt{v}/\sqrt{u})}}{4u\sqrt{v}}, & \text{if } u, v \geq 0, \\ 0, & \text{otherwise.} \end{cases}$$

3. You have 4 light bulbs whose lifetimes are independent normal random variables with mean 100 (hours) and standard deviation 5 (hours). Find the probability that your 4 light bulbs together live for at least 402 hours.

Solution: Let X_i denote the lifetime of the ith light bulb. Then X_i is $N(100, 25)$ for each i. Therefore, by independence, $X_1 + \cdots + X_4$ is $N(400, 100)$. Thus,

$$P\{X_1 + \cdots + X_4 \geq 402\} = P\left\{N(0,1) \geq \frac{402-400}{\sqrt{100}}\right\} \approx P\{N(0,1) \geq 0.2\} \approx 0.4207.$$

4. Suppose X_1, X_2, X_3 and X_4 are independent with common mean 1 and common variance 2. Compute $\text{Cov}(X_1 + X_2, X_2 + X_3)$.

Solution: The covariance is equal to

$$\text{Cov}(X_1, X_2) + \text{Cov}(X_1, X_3) + \text{Cov}(X_2, X_2) + \text{Cov}(X_2, X_3) = 0 + 0 + 2 + 0 = 2.$$
5. Let X_1, X_2, \ldots, X_{20} be independent Poisson random variables with mean one. Use the central limit theorem to approximate $P\{\sum_{i=1}^{20} X_i > 15\}$.

Solution: The expectation of each X_i is 1, and so is the variance. Therefore, $E(\sum_{i=1}^{20} X_i) = 20$, and so is the variance. If we apply the CLT, then

$$P\left\{\sum_{i=1}^{20} X_i > 15\right\} \approx P\{N(20, 20) > 15\} = P\left\{N(0, 1) > \frac{15 - 20}{\sqrt{20}}\right\} \approx P\{N(0, 1) > -1.1\}.$$

This is $1 - \Phi(-1.1) = \Phi(1.1) \approx 0.8643$.
