If \(f \) and \(f \circ g \) are 1-1, then \(g \) is also 1-1.

Proof: \(f \) and \(f \circ g \) are 1-1 functions.
\[
f(x) = f(y) \quad \text{and} \quad (f \circ g)(a) = (f \circ g)(b)
\]
\[
x = y \quad \text{and} \quad a = b
\]

WTS: \(g \) is 1-1

Let \(g(z) = g(w) \) differentiate
\[
f(g(z)) = f(g(w))
\]
\[
(f \circ g)(z) = (f \circ g)(w)
\]
\[
z = w
\]

Therefore \(g \) is 1-1.

R on set \(A \)

- **Reflexive** if \((a,a) \in R\) for all \(a \in A\)
- **Symmetric** if \((b,a) \in R\) when \((a,b) \in R\) for all \(a, b \in A\)
- **Anti-Symmetric** if \(a = b \) when \((a, b), (b, a) \in R\) for all \(a, b \in A\)
- **Transitive** if \((a, c) \in R\) when \((a, b), (b, c) \in R\) for all \(a, b, c \in A\)

PART A: \(a \) is taller than \(b \)

- Let \(R \) be a relation on set \(A \) defined by \((a, b) \in R\) if \(a \) is taller than \(b \) for any \(a, b \in A\).
 - \((a, a) \notin R\), so \(a \) cannot be taller than \(a \) or \(a \) is not reflexive.
 - \((a, b) \in R\) \(a \) is taller than \(b \)
 - \((b, a) \notin R\) \((b, a) \in R\) \(b \) is taller than \(a \)
 - \(a \) is not symmetric
 - \(b \) is not symmetric
 - \(R \) is anti-symmetric
 - \(R \) is not reflexive
\[\text{let } a, b, c \in A, (a, b), (b, c) \in R \]
\[a \text{ is taller than } b, b \text{ is taller than } c \]
\[(a, c) \in R \]
\[\text{so } R \text{ is TRANSITIVE} \]

\[\text{PART B: } a \text{ & } b \text{ were born on the same day} \]
\[\text{let } R \text{ be a relation on set } & \text{ all people } & \text{ defined by} \]
\[(a, b) \in R \text{ if } & \text{ only if } a \text{ & } b \text{ were born on the same day} \]
\[\text{for any } a \in A, a \text{ & } b \text{ are born on the same day} \]
\[(a, a) \in R \text{ for every } a \in A \]
\[\therefore R \text{ is reflexive} \]
\[\text{let } a, b \in A, (a, b) \in R \]
\[a \text{ & } b \text{ were born on the same day} \]
\[b \text{ & } a \text{ were born on the same day} \]
\[(b, a) \in R \]
\[\therefore R \text{ is symmetric} \]
\[\text{since different persons born on same day, } R \neq \text{ anti-symmetric} \]
\[\text{let } a, b, c \in A, (a, b), (b, c) \in R \]
\[a \text{ & } b \text{ were born on the same day} \]
\[b \text{ & } c \text{ were born on the same day} \]
\[a \text{ & } c \text{ were born on the same day} \]
\[(a, c) \in R \]
\[\therefore R \text{ is transitive} \]

\[\text{So } R \text{ is reflexive, symmetric, \& transitive} \]

\[\text{PART C: } a \text{ has the same first name as } b \]
\[\text{let } R \text{ be a relation on set } & \text{ all people } & \text{ defined by} \]
\[(a, b) \in R \text{ if } & \text{ only if } a \text{ & } b \text{ have same first name} \]
\[\text{for any } a \in A, a \text{ & } b \text{ have same first name} \]
\[(a, a) \in R \text{ for every } a \in A \]
\[\therefore R \text{ is reflexive} \]
\[\text{let } a, b \in A, (a, b) \in R \]
\[a \text{ & } b \text{ have same first name} \]
\[b \text{ & } a \text{ have same first name} \]
\[(b, a) \in R \]
\[\therefore R \text{ is symmetric} \]
\[\text{different people may have same last name, } R \neq \text{ anti-symmetric} \]
Let \(a, b, c \in A, (a, b), (b, c) \in R \)
\(a \neq b \) have same first name
\(b \neq c \) have """"""""
\(a \neq c \) have """"""""

\((a, c) \in R \)
\(\therefore R \) is transitive

So \(R \) is reflexive, symmetric, \(\theta \) transitive

PART D: \(a \neq b \) have a common grandparent

Let \(R \) be a relation on the set of all people \(A \) defined by \((a, b) \in R \) if \(\& \) only if \(a \neq b \) have a common grandparent for any \(a \in A \).

\((a, a) \in R \) for every \(a \in A \)
\(\therefore R \) is reflexive

Let \(a, b \in A, (a, b) \in R \)
\(a \neq b \) have a common grandparent
\(b \neq a \) have a common grandparent
\((b, a) \in R \)
\(\therefore R \) is symmetric

\(\) diff. people may have common grandparent so \(R \neq \) anti-symmetric

Let \(a, b, c \in A, (a, b), (b, c) \in R \)
\(a \neq b \) have a common grandparent
\(b \neq c \) have a common grandparent
\(a \neq c \) may or may not have a common grandparent
\(\therefore R \) is not transitive

So \(R \) is reflexive \& symmetric

\(b \)
\((x, y) \in R \) if \(\& \) only if \(R \neq TR \)

PART A: \(x + y = 0 \)
\((x, y) \in R \)

\((1, 1) \notin R \)
\(\therefore \) Not reflexive

Let \(x, y \in R, (x, y) \in R \)
\(x + y = 0 \)
\(y + x = 0 \)
\(\therefore \) symmetric
. \((1, 1), (1, 1) \in \mathbb{R}\) but \(1 \neq 1\)
 Not anti-symmetric

. \((2, -2), (-2, 2) \in \mathbb{R}\) but \((2, 2) \notin \mathbb{R}\)
 Not transitive

So \(R\) is symmetric

PART B: \(x = \pm y\)

. \((x, y) \in \mathbb{R}\) if and only if \(x = \pm y\)
 \(x = x \quad \forall x \in \mathbb{R}\) \((x, x) \in \mathbb{R} \quad \forall x \in \mathbb{R}\)
 \(\therefore R\) is reflexive

. \(x, y \in \mathbb{R}, (x, y) \in \mathbb{R}\)
 \(x = \pm y\)
 \(y = \pm x\)
 \(\therefore R\) is symmetric

. \((1, 1), (1, 1) \in \mathbb{R}\) but \(1 \neq 1\)
 Not anti-symmetric

. Let \(a, b, c \in \mathbb{R}, (a, b), (b, c) \in \mathbb{R}\)
 \(a = \pm b, b = \pm c\)
 \(a = \pm c\)
 \((a, c) \in \mathbb{R}\)
 \(\therefore R\) is transitive

So \(R\) is Reflexive, symmetric & transitive

PART C: \(x - y\) is a rational number

. \((x, y) \in \mathbb{R}\) if and only if \(x - y\) is a rational number
 any \(x \in \mathbb{R}, x - x = 0\) is rational number
 \((x, x) \in \mathbb{R} \quad \forall x \in \mathbb{R}\)
 \(\therefore R\) is reflexive

. Let \(x, y \in \mathbb{R}, (x, y) \in \mathbb{R}\)
 \(x - y\) is rational number
 \(y - x\) is rational number
 \((y, x) \in \mathbb{R}\)
 \(\therefore R\) is symmetric

. \((2, 3), (3, 2) \in \mathbb{R}\) but \(2 \neq 3\)
 Not anti-symmetric

. Let \(x, y, z \in \mathbb{R}, (x, y), (y, z) \in \mathbb{R}\)
 \(x - y, y - z\) are rational number
 \((x - y) + (y - z)\) are rational number
 \(x - z\) is rational number
 \((x, z) \in \mathbb{R}\)
 \(\therefore R\) is transitive.
22 \(\{ (a,a), (a,b), (b,c), (c,d), (a,a), (d,b) \} \equiv R \)

Elements \(\rightarrow \) Vertices \(\{ a, b \} \) where \((a,b) \in R \rightarrow \) Edges

\(R \) is relation on \(\{ a, b, c, d \} \)

\(5/5 \)

2b

\[R = \{ (a,a), (a,b), (b,a), (b,b), (c,a), (c,c), (c,d), (d,d) \} \]

on \(\{ a, b, c, d \} \)

\(5/5 \)