Sample questions for Quiz 3.

(1) Consider the function \(f : \mathbb{R}^2 \to \mathbb{R} \), given by
\[
f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\
0, & (x, y) \neq (0, 0)
\end{cases}
\]
Show that both \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) exist everywhere, but the function \(f \) is not differentiable at \((0, 0)\).

(2) Find the differential matrix for the function \(G : \mathbb{R}^+ \times \mathbb{R}^2 \to \mathbb{R} \) defined by
\[
G(x, y) = (y \ln x, xe^{xy}, \sin(xy)).
\]
Then find the best affine approximation to \(G \) at the point \((1, \frac{\pi}{2})\).

(3) Assume the function \(F : \mathbb{R}^p \to \mathbb{R} \) is differentiable everywhere, and that its gradient \(dF \) is a constant vector. Show that \(F \) is an affine function.

(4) Find the differential of the real values function \(f(x, y, z) = xy^2 \cos xz \). Then find the best affine approximation to \(f \) at the point \((1, 1, \frac{\pi}{2})\).

(5) From the definitions, prove that if a function \(F : U \to \mathbb{R}^q, U \subset \mathbb{R}^p \) open, is differentiable at \(a \in \mathbb{R}^p \), then \(F \) is continuous at \(a \).

(6) If \(f : \mathbb{R} \to \mathbb{R} \) is differentiable, and \(g(x, y) = f(xy) \), show that
\[
x \frac{\partial g}{\partial x} - y \frac{\partial g}{\partial y} = 0.
\]

(7) If \((x, y)\) are the Cartesian coordinates in the plane, the polar coordinates are
\[
x = r \cos \theta, \quad y = r \sin \theta.
\]
(a) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a differentiable function in \(x, y \). Find formulas for the partial derivatives of \(f \) with respect to \(r \) and \(\theta \) in terms of the partial derivatives with respect to \(x \) and \(y \).

(b) An important operator in mathematics is the Laplacian \(\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \). Prove that in polar coordinates, the Laplacian is given by
\[
\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}.
\]

(8) For the curve \(\gamma(t) = (\cos t, \sin 2t) \), find a parametric equation of the tangent line at \((0, 0)\) if the domain of \(\gamma(t) \) is \(\{ t : \pi < t < 2\pi \} \).

(9) Find an equation for the tangent plane to the surface \(x^2 + y^2 - z^2 = 1 \) at each point \((a, b, c) \) on the surface.

(10) Find the degree \(n = 2 \) Taylor’s formula for \(f(x, y) = \ln(x + y + 1) \) at the point \((0, 0)\).

(11) Find all points of local maximum and local minimum and all saddle points for \(f(x, y) = y^3 + y^2 + x^2 - 2xy - 3y \).

(12) Find where the function \(f(x, y, z) = 2xy - z \) attains its maximum and minimum values on the sphere \(S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \).

(13) Consider \(F : \mathbb{R}^2 \to \mathbb{R}^2, F(x, y) = (e^x \cos y, e^x \sin y) \).
(a) Does \(F \) have an inverse?
(b) Does \(F \) have a smooth local inverse function near every point \((x, y)\)?
(14) Consider \(F : \mathbb{R}^2 \rightarrow \mathbb{R}^2, F(r, \theta) = (r \cos \theta, r \sin \theta) \). Does a smooth local inverse function exist near \((1, 2\pi)\)? If it does, find one explicitly.

(15) Consider the function \(F : \mathbb{R}^2 \setminus \{(0,0)\} \rightarrow \mathbb{R}^2, F(x, y) = (x^2, \frac{y}{x}) \).

(a) Find all the points near which \(F \) has a smooth local inverse.

(b) If \(F \) is restricted to \(V = \{(x, y) : x > 0, y > 0\} \), find a smooth inverse for \(F \). What is the domain of \(F^{-1} \)?

(c) As in (b), find the differential of \(F^{-1} \) directly, and also by applying the Inverse Function Theorem. Compare the results.

(16) Exercises 4 and 5 in 9.7.