Problems

1. Textbook Problems: 3.2.51, 3.2.52.

2. Textbook Problems: 3.3.3 to 3.3.10, 3.3.22, 3.3.26, 3.3.38 and 3.3.45.

3. Textbook Problems: 3.4.16, 3.4.22, 3.4.28, 3.4.30, 3.3.36.

4. a) Suppose \(A \in \mathbb{R}^{m \times n} \) is such that \(A + B = B \) for every \(B \in \mathbb{R}^{m \times n} \). Find \(A \).

 b) A matrix \(A \in \mathbb{R}^{m \times n} \) is said to be a zero matrix if all of its entries are zero. If \(B \in \mathbb{R}^{m \times n} \), what is \(A + B \)? \(B + A \)?

 c) Recall that if \(x, y \in \mathbb{R} \) are such that \(xy = 0 \), then either \(x = 0 \) or \(y = 0 \). However, matrix multiplication does not have this property. Give an example of two nonzero matrices \(A \) and \(B \) such that \(AB \) is a zero matrix.

5. Solve for \(x \), \(y \), \(z \) and \(w \):

\[
\begin{bmatrix}
 x & 4 \\
 4y & w
\end{bmatrix}
- \begin{bmatrix}
 4x & 2z \\
 -3 & -2w
\end{bmatrix}
= \begin{bmatrix}
 12 & 8 \\
 y & 6
\end{bmatrix}.
\]

6. Rewrite the matrix equation the following matrix equation as a linear system of linear equations:

\[
\begin{bmatrix}
 3 & 1 & 0 \\
 2 & -2 & 1 \\
 1 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
= \begin{bmatrix}
 4 \\
 9 \\
 2
\end{bmatrix}.
\]

Do NOT solve it.