1. Show that if

$$f(x) \sim a(x - x_0)^{-b}$$
 as $x \to x_0^+$,

then

$$\int_{x_0}^x f(t)dt \sim \frac{a}{1-b}(x-x_0)^{1-b} \quad \text{as } x \to x_0^+ \quad \text{if } b < 1.$$

- 2. (a) Give an example of an asymptotic relation $f \sim g$ as $x \to \infty$ that cannot be exponentiated, i.e. $\exp(f(x)) \sim \exp(g(x))$ as $x \to \infty$ is false.
 - (b) Show that if $f(x) g(x) \ll 1$ as $x \to \infty$, then $\exp(f(x)) \sim \exp(g(x))$ as $x \to \infty$.
- 3. Find the leading behavior as $x \to 0^+$ of
 - (a) $\int_0^1 e^{-x/t} dt;$
 - (b) $\int_x^1 \cos(xt) dt;$
 - (c) $\int_0^{1/x} e^{-t^2} dt;$

(d)
$$\int_1^\infty \cos(xt)t^{-1}dt.$$

4. Let
$$I(x) = \int_0^\infty e^{-t} / (1 + xe^{t^2}) dt$$
. Show that $I(x) - 1 \sim -\exp(\sqrt{-\ln x})$ as $x \to 0^+$.

- 5. Use Laplace's method to determine the leading behavior of
 - (a) $\int_0^{\pi/2} \sqrt{t} e^{-x \sin^4 t} dt$ as $x \to \infty$;
 - (b) $\int_0^1 \sqrt{\tan t} e^{-xt^2} dt$ as $x \to \infty$.
- 6. **Problem 10.3.1** Use Watson's lemma to obtain an asymptotic expansion of $E_1(x) = \int_x^\infty e^{-t}/t dt$. HINT: Show that $E_1(x) = e^{-x} \int_0^\infty e^{-xt}/(1+t) dt$.
- 7. Problem 10.3.9 The modified Bessel function $I_n(x)$ has the integral representation

$$I_n(x) = \frac{1}{\pi} \int_0^{\pi} \exp(x \cos \theta) \cos(n\theta) d\theta.$$

Show that $I_n(x) \sim e^x / \sqrt{2\pi x}$.