1. Let $-\infty<a<b<\infty$ and $S(z)=\frac{z-i a}{z-i b}$. Define the lines $L_{1}=\{z: \operatorname{Im}(z)=b\}, L_{2}=\{z$: $\operatorname{Im}(z)=a\}$ and $L_{3}=\{z: \operatorname{Re}(z)=0\}$. Determine the image under S of the six regions in the complex plane defined by the lines.
2. (a) Find the fixed points of a dilation, a translation and the inversion on \mathbb{C}_{∞}.
(b) Show that a Möbius transformation has 0 and ∞ as its only fixed points if and only if it is a dilation, but not the identity.
(c) Show that a Möbius transformation has ∞ as its only fixed points if and only if it is a translation, but not the identity.
3. Solve the Laplace equation $\Delta \Phi=0$ in the domain between the two non concentric circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=9$ with the boundary conditions $\Phi=1$ on the inner circle and $\Phi=2$ on the outer circle.

4. From Acheson.

(a) Show that the Joukowski transformation $Z=z+a^{2} / z$ can be written in the form

$$
\frac{Z-2 a}{Z+2 a}=\left(\frac{z-a}{z+a}\right)^{2},
$$

so that

$$
\arg (Z-2 a)-\arg (Z+2 a)=2[\arg (z-a)-\arg (z+a)] .
$$

(b) Consider the circle in the z-plane which passes through $z=-a$ and $z=a$ and has centre $i a \cot \beta$. Show that the above transformation takes it into a circular arc between $Z=-2 a$ and $Z=2 a$ with subtended angle 2β.

(c) Obtain an expression for the complex potential in the Z-plane, when the flow is uniform, speed U, and parallel to the real axis.
(d) Show that the velocity will be finite at both the leading and trailing edges if

$$
\Gamma=-4 \pi U a \cot \beta
$$

This exceptional circumstance arises only when the undisturbed flow is parallel to the chord line of the arc.
5. Problem 6.5.4 Solve the generalization of Abel's integral equation

$$
T(x)=\int_{0}^{x} \frac{f(y) d y}{(x-y)^{\alpha}}
$$

for $f(x)$ in terms of $T(x)$ where $0<\alpha<1$.
6. Problem 6.5.2 Verify the binomial theorem

$$
(1+z)^{\alpha}=\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-n+1) \Gamma(n+1)} z^{n} .
$$

For what values of α and z is this a correct formula?
7. Problem 6.5.9 Show that

$$
J_{-1 / 2}(z)=\sqrt{\frac{2}{\pi z}} \cos z
$$

8. Problem 6.5.9 Prove that

$$
J_{0}(z)+2 \sum_{n=1}^{\infty} J_{2 n}(z)=1
$$

9. In polar coordinates, the free transverse vibrations of a stretched membrane (with equilibrium position in the $r \theta$-plane) are described by the equation

$$
\Delta_{p} u(r, \theta, t)=\frac{1}{b^{2}} \frac{\partial^{2} u(r, \theta, t)}{\partial t^{2}}
$$

where Δ_{p} is the Laplacian in polar coordinates. Solve the equation of motion for the case of a circular membrane of radius a subject to the boundary condition $u(r=a, \theta, t)=0$ and the initial conditions $u(r, \theta, 0)=f(r)$ and $\frac{\partial u(r, \theta, 0)}{\partial t}=g(r)$.
HINT: Use Bessel functions.

