1. Show that, if a > 0, then

$$\int_0^\infty \frac{\cos(ax)}{(1+x^2)^2} dx = \frac{\pi(a+1)e^{-a}}{4}.$$

2. Let $f(z) = \exp(-cl(z))$, where $l(re^{i\theta}) = \ln r + i\theta$ for $\theta \in (0, 2\pi)$, be a branch of z^{-c} if 0 < c < 1. Let L_1 be the line segment $[r + \delta i, R + \delta i]$ for 0 < r < 1 < R and $\delta > 0$. Show that

$$\int_{r}^{R} \frac{t^{-c}}{1+t} dt = \lim_{\delta \to 0^{+}} \int_{L_{1}} \frac{f(z)}{1+z} dz.$$

HINT: Define $g(t, \delta)$ on the compact set $[r, R] \times [0, \pi/2]$ by

$$g(t,\delta) = \left| \frac{f(t+i\delta)}{1+t+i\delta} - \frac{t^{-c}}{1+t} \right|$$

when $\delta > 0$ and $g(t, 0) \equiv 0$. Show that g is continuous and hence uniformly continuous. Show that if $\varepsilon > 0$, then there exists $\delta_0 > 0$ such that $\int_r^R g(t, \delta) dt \leq \varepsilon$ for $\delta < \delta_0$.

- 3. Let S be the unit sphere and \mathbb{C}_{∞} the extended plane. Let \mathbb{C}_{∞} be represented by S using the stereographic projection.
 - (a) Find the point in S corresponding to 0, 1 + i, 1 + 2i.
 - (b) Which subsets of S corresponds to the real and imaginary axes in \mathbb{C} ?
- 4. An irrotational 2D flow has stream function $\Psi = A(x-c)y$, where A, c are constants. A circular cylinder of radius a is introduced, its centre being at the origin. Find the complex potential, and hence the stream function, of the resulting flow. Use Blasius's theorem to calculate the force exerted on the cylinder.
- 5. Show that the problem of irrotational flow past a circular cylinder may be formulated in terms of the potential $\Phi(r, \theta)$ as follows

$$\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = 0,$$

with $\Phi \sim Ur \cos \theta$ as $r \to \infty$ and $\frac{\partial \Phi}{\partial r} = 0$ on r = a. Obtain the potential using the method of separation of variables.

- 6. Problem 6.3.6
 - (a) Describe the flow associated with the function $f(z) = Az^2$. Make a contour plot of $\Psi(x, y)$.
 - (b) Modify the flow so that it flows around a circle of radius 1 centered at z = i. What is the lift on this circle ?
 - (c) Add circulation to this flow by adding the term $i\gamma \ln(z-i)$. What is the lift on the circle in this flow ?