1. Consider the velocity field for a Newtonian fluid between two infinite parallel disks that are separated by a gap H. The lower disk rotates about the central axis with angular velocity Ω. Assume that the other disk is stationary. The governing equations are given below.

Continuity:

$$
\frac{1}{r}\left[\partial_{r}\left(r u_{r}\right)+\partial_{\theta} u_{\theta}\right]+\partial_{z} u_{z}=0
$$

r-momentum:

$$
\begin{aligned}
& \rho\left(u_{r} \partial_{r} u_{r}+\frac{u_{\theta}}{r} \partial_{\theta} u_{r}+u_{z} \partial_{z} u_{r}-\frac{u_{\theta}^{2}}{r}\right)=-\partial_{r} p \\
& \quad+\mu\left[\partial_{r}\left(\frac{1}{r} \partial_{r}\left(r u_{r}\right)\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u_{r}-\frac{2}{r^{2}} \partial_{\theta} u_{\theta}+\partial_{z z} u_{r}\right]
\end{aligned}
$$

θ-momentum:

$$
\begin{aligned}
& \rho\left(\partial_{t} u_{\theta}+u_{r} \partial_{r} u_{\theta}+\frac{u_{\theta}}{r} \partial_{\theta} u_{\theta}+u_{z} \partial_{z} u_{\theta}+\frac{u_{\theta} u_{r}}{r}\right)=-\frac{1}{r} \partial_{\theta} p \\
& \quad+\mu\left[\partial_{r}\left(\frac{1}{r} \partial_{r}\left(r u_{\theta}\right)\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u_{\theta}+\frac{2}{r^{2}} \partial_{\theta} u_{r}+\partial_{z z} u_{\theta}\right]
\end{aligned}
$$

z-momentum:

$$
\rho\left(\partial_{t} u_{z}+u_{r} \partial_{r} u_{z}+\frac{u_{\theta}}{r} \partial_{\theta} u_{z}+u_{z} \partial_{z} u_{z}\right)=-\partial_{z} p+\mu\left[\partial_{r}\left(\frac{1}{r} \partial_{r}\left(r u_{z}\right)\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u_{z}+\partial_{z z} u_{z}\right]
$$

The boundary conditions are:
At $z=0, u_{r}=u_{z}=0$ and $u_{\theta}=\Omega r$.
At $z=H, u_{r}=u_{z}=u_{\theta}=0$.

1. Nondimensionalize the equations. Note that there are two choices for the characteristic pressure either $p_{c}=\Omega \mu$ or $p_{c}=\rho \Omega^{2} H^{2}$. Explain how the second choice is the correct one when considering the limit $\operatorname{Re} \rightarrow 0$, while the first one is to be used in the limit $\operatorname{Re} \rightarrow 0$.
2. Solve the equation in the creeping flow limit, i.e $\operatorname{Re}=0$. Note that the solution is radially symmetric and independent of θ.
3. Use a regular perturbation series to obtain the first order solution, i.e. up to and including terms $O(\mathrm{Re})$.
4. Use Matlab or another software to plot the secondary flow (the first order perturbation).
5. Consider a general similarity solution $\Psi=F(x) f(\eta)$ with $\eta=y / g(x)$ to the boundary layer equations

$$
u \partial_{x} u+v \partial_{y} u=-\frac{1}{\rho} \partial_{x} p+\nu \partial_{y y} u \quad \partial_{x} u+\partial_{y} v=0
$$

where Ψ is a the stream function.

1. Show that the condition, $u \rightarrow U(x)$ as $y / \delta \rightarrow \infty$, demands that $F(x)=c U(x) g(x)$, where c is a constant, and then choose c to be 1 .
2. Show that substitution in the boundary layer equations leads to

$$
f^{\prime 2}-\left(1+\frac{U}{U^{\prime}} \frac{g^{\prime}}{g}\right) f f^{\prime \prime}=1+\frac{\nu f^{\prime \prime \prime}}{g^{2} U^{\prime}} .
$$

Eliminate the pressure by matching to the outer solution (Bernoulli), i.e.

$$
-\frac{1}{\rho} \partial_{x} p=u_{e} \partial_{x} u_{e}=U(x) U^{\prime}(x)
$$

3. Deduce that a similarity solution is only possible if either $U(x) \sim\left(x-x_{0}\right)^{m}$ or $U(x) \sim e^{\alpha x}$, where x_{0}, m, α are constants.
4. In the case, $U(x)=A x^{m}, A>0$, show that $g(x)$ is proportional to $x^{(1-m) / 2}$, and show that choosing

$$
g(x)=\sqrt{\frac{2 \nu}{(m+1) A x^{m-1}}}
$$

leads to

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+\frac{2 m}{m+1}\left(1-f^{\prime 2}\right)=0,
$$

subject to $f(0)=f^{\prime}(0)=0$ and $f^{\prime}(\infty)=1$.
3. Consider uniform slow flow past a circular cylinder, and show that the problem reduces to

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)^{2} \Psi=0
$$

with $\frac{\partial \Psi}{\partial r}=\frac{\partial \Psi}{\partial \theta}=0$ on $r=a$ and $\Psi \sim U r \sin \theta$ as $r \rightarrow \infty$. Show that seeking a solution of the form $\Psi=f(r) \sin \theta$ leads to

$$
\Psi=\left[A r^{3}+B r \log r+C r+\frac{D}{r}\right] \sin \theta
$$

and thus fails, in that for no choice of the arbitrary constants can all the boundary conditions be satisfied.

