
MATH 6750
Homework # 2

Due Date: October 15, 2019 at the beginning of class.

1. When the wind blows over a chimney, vortices are shed into the wake. The frequency of vortex
shedding f depends on the chimney diameter D, its length L, the wind velocity V and the
kinematic viscosity of air ν. Express the nondimensional shedding frequency in terms of its
dependence on the other nondimensional groups.

2. A cone and plate viscometer consists of a cone with a very small angle α which rotates above
a flat surface. The torque required to spin the cone at a constant speed is a direct measure of
the viscous resistance. The torque T is a function of the radius R, the cone angle α, the fluid
viscosity µ, and the angular velocity ω.

(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.

(b) If α and R are kept constant, how will the torque change if both the viscosity and the
angular velocity are doubled?

3. Two incompressible viscous fluids of the same density ρ flow, one on top of the other, down
an inclined plane making an angle α with the horizontal. Their viscosities are µ1 and µ2, the
lower fluid is of depth h1 and the upper fluid is of depth h2. Show that
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4. A viscous flow is generated in r ≥ a by a circular cylinder r = a which rotates with constant
angular velocity Ω. There is also a radial inflow which results from a uniform suction on the
(porous) cylinder, so that ur = −U on r = a. Show that
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and that
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where Re = Ua/ν. Show that if Re < 2 there is just one solution of this equation which
satisfies the no-slip condition on r = a and has finite circulation Γ = 2πruθ at infinity, but that
if Re > 2 there are many such solutions.
The circulation around a cylinder of radius a is Γ =

∮
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5. Consider two parallel plates located at y = ±L. Assume that the pressure gradient in the x-
direction oscillates in time, i.e ∂p

∂x = Px cos(nt), where Px is constant representing the magnitude
of the pressure-gradient oscillations. Assuming no-slip and no-penetration boundary conditions
and one dimensional flow, show that the solution to this unsteady problem is
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6. Show that the dispersion relation for waves on the interface between two fluids, the upper fluid

being of density ρ2 and the lower being of density ρ1 with ρ1 > ρ2 is
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