Instructions:

- There is a two hours time limit to complete the midterm. The time limit is enforced on the honor system, do not spend the entire weekend thinking about the problems.
- Verbal or electronic collaborations are not allowed.
- Notes, books, electronic material are not allowed.


## 1. Conformal mappings

(a) Show that the transformation $\xi=1 / z$ maps the line $x=c_{1} \neq 0$ to a circle with center along the real axis.
(b) A Möbius transformation maps the region between the non-concentric circles $|z|=1$ and $|z-13 / 4|=(15 / 4)^{2}$ onto an annulus $\rho_{0}<|z|<1$. Find $\rho_{0}$ only, i.e you don't need to give the transformation.

## 2. Green's function

Find the Green's function for the operator $(L-\lambda) u=\delta(x-\xi), \lambda \neq 0, L u=-u^{\prime \prime}$ on $[0,1]$ with boundary conditions $u^{\prime}(0)=u(1)=0$.
HINT: $\sin (u) \sin (v)=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$ and $\cos (u) \cos (v)=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$.

## 3. Asymptotic expansion of integrals

Find the leading order behavior and show that the relationship is asymptotic.
(a)

$$
E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t \quad x \rightarrow 0^{+}
$$

(b)

$$
I(x)=\int_{x}^{\infty} e^{-t^{3}} d t \quad x \rightarrow+\infty
$$

## 4. Watson's lemma

Show that the complete asymptotic expansion of

$$
I(x)=\int_{0}^{\infty}\left(t^{2}+2 t\right)^{-1 / 2} e^{-x t} d t
$$

is

$$
I(x) \sim \sum_{n=0}^{\infty}(-1)^{n} \frac{[\Gamma(n+1 / 2)]^{2}}{2^{n+1 / 2} n!\Gamma(1 / 2) x^{n+1 / 2}} \quad x \rightarrow+\infty .
$$

HINT: The Gamma function satisfies $\Gamma(1 / 2)=\sqrt{\pi}$ and $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}$.

