Final exam notes for Math 3210

Limits. Let \(\{a_n\} \) be a sequence. Then

\[
\lim_{n \to \infty} a_n = a
\]

if for all \(\epsilon > 0 \) there exists an \(N \) such that if \(n > N \) then \(|a_n - a| < \epsilon \). If no such \(a \) exists then the sequence is **divergent**. The sequence \(a_n \) is **Cauchy** if for all \(\epsilon > 0 \) there exists an \(N > 0 \) such that if \(n, m > N \) then \(|a_n - a_m| \leq \epsilon \).

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose \(a_n \to a \), \(b_n \to b \), \(c \) is a real number and \(k \) a natural number. Then

1. \(ca_n \to ca \);
2. \(a_n + b_n \to a + b \);
3. \(a_nb_n \to ab \);
4. \(a_n/b_n \to a/b \) if \(b \neq 0 \) and \(b_n \neq 0 \) for all \(n \);
5. \(a_n^k \to a^k \);
6. \(a_n^{1/k} \to a^{1/k} \) if \(a_n \geq 0 \) for all \(n \).

If \(A \) is a subset of \(\mathbb{R} \) the \(a = \sup A \) if \(a \geq x \) for all \(x \in A \) and \(a' \geq x \) for all \(x \in A \) then \(x \leq y \). We define \(\inf A \) be reversing the inequalities. If we allow \(+\infty \) and \(-\infty \) the \(\sup A \) and \(\inf A \) always exist.

Let \(\{a_n\} \) be a sequence and define \(i_n = \inf\{a_k : k \geq n\} \) and \(s_n = \sup\{a_k : k \geq n\} \). Then

\[
\lim \inf a_n = \lim i_n
\]

and

\[
\lim \sup a_n = \lim s_n.
\]

Continuity. Let \(f : D \to \mathbb{R} \) be a function defined on a domain \(D \subset \mathbb{R} \). Then

\[
\lim_{x \to a} f = b
\]

if for all \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if for all \(x \in D \) with \(0 < |x - a| < \delta \) then \(|f(x) - b| < \epsilon \). The function \(f \) is **continuous** at \(a \) if

\[
\lim_{x \to a} f = f(a)
\]

There is a theorem similar Theorem 0.3 for limits of functions.

The function \(f \) is **uniformly continuous** if for all \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if \(x, y \in D \) and \(|x - y| < \delta \) then \(|f(x) - f(y)| < \epsilon \).
Theorem 0.4 Let \(f : [a, b] \to \mathbb{R} \) be continuous. Then there exists a \(c \) and \(d \) in \([a, b]\) such that \(f(x) \leq f(c) \) and \(f(x) \geq f(d) \) for all \(x \in [a, b] \).

Theorem 0.5 (Intermediate Value Theorem) Let \(f : [a, b] \to \mathbb{R} \) be continuous. If \(y \) is between \(f(a) \) and \(f(b) \) then there exists a \(x \in [a, b] \) such that \(f(c) = y \).

Theorem 0.6 Let \(f : [a, b] \to \mathbb{R} \) be continuous. Then \(f \) is uniformly continuous.

A sequence of functions \(f_n : D \to \mathbb{R} \) converges uniformly to \(f : D \to \mathbb{R} \) if for all \(\epsilon > 0 \) there exists an \(N > 0 \) such that if \(n > N \) then \(|f_n(x) - f(x)| < \epsilon \) for all \(x \in D \).

Theorem 0.7 Let \(f_n : D \to \mathbb{R} \) be continuous. If \(f_n \to f \) uniformly then \(f \) is continuous.

Derivatives. Define the derivative \(f'(a) \) of the function \(f \) at \(a \) by

\[
 f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
\]

if it exists.

Differentiation rules (abbreviated):

1. \((f + g)'(a) = f'(a) + g'(a)\);
2. \((fg)(a) = f'(a)g(a) + f(a)g'(a)\);
3. \((f/g)(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}\);
4. \((f \circ g)'(a) = f'(g(a))g'(a)\)

Theorem 0.8 (Mean Value Theorem) Let \(f : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Then there exists a \(c \in (a, b) \) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

Theorem 0.9 (L'Hôpital's Rule) If \(f(x), g(x) \to 0 \) or \(f(x), g(x) \to \infty \) as \(x \to a \) then

\[
 \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.
\]
Integrals. Let $P = \{x_0 = a < x_1 < \cdots < x_{n-1} < x_n = b\}$ be a partition of $[a, b]$ and for $k = 1, \ldots, n$ set

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\} \text{ and } m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}.$$

We then define the upper and lower sums for P by

$$U(f, P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1})$$

and

$$L(f, P) = \sum_{k=1}^{n} m_k(x_k - x_{k-1}).$$

We define the upper and lower integrals by

$$\int_{a}^{b} f(x)dx = \inf\{U(f, P) : P \text{ is a partition of } [0, 1]\}$$

and

$$\int_{a}^{b} f(x)dx = \sup\{L(f, P) : P \text{ is a partition of } [0, 1]\}.$$

Then f is integrable if $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx$ and we write

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx.$$

Theorem 0.10 f is integrable \iff for all $\varepsilon > 0$ there exist a partition P such that $U(f, P) - L(f, P) < \varepsilon$ \iff there exists partitions P_n such that $U(f, P_n) - L(f, P_n) \to 0$.

Properties of integrals (abbreviated):

1. $\int c f = c \int f$ if $c \in \mathbb{R}$;
2. $\int f + \int g = \int f + g$;
3. $|\int f| \leq \int |f|$;
4. $\int_{a}^{b} f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(u)du$;
5. $\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x)dx$

Theorem 0.11 (Fundamental Theorems of Calculus)
1. \[\int_a^b f'(x)\,dx = f(b) - f(a) \]

2. Define

\[F(x) = \int_a^x f(t)\,dt. \]

If \(f \) is continuous at \(x \) then \(F'(x) = f(x) \).

Series. Let \(\{a_n\} \) be a sequence. Then the series \(\sum_{k=0}^{\infty} a_k \) converges if the sequence of partial sums \(s_n = \sum_{k=0}^{n} a_k \) converges. If \(\sum_{k=0}^{\infty} |a_k| \) converges then the series \(\sum_{k=0}^{\infty} a_k \) converges absolutely. If \(\sum_{k=0}^{\infty} |a_k| \) doesn’t converge but \(\sum_{k=0}^{\infty} a_k \) does then the series converges conditionally.

Tests for convergence and divergence:

1. If \(\sum_{k=0}^{\infty} a_n \) converges then \(a_n \to 0 \).
2. If \(a_n \geq b_n \) and \(\sum_{k=0}^{\infty} b_k \) converges then \(\sum_{k=0}^{\infty} a_k \) converges absolutely.
3. Let \(\{a_n\} \) be a sequence with \(0 \leq a_{n+1} \leq a_n \) and let \(f : [0, \infty) \to \mathbb{R} \) be a non-increasing function such that \(f(n) = a_n \). Then \(\sum_{k=1}^{\infty} a_k \) converges \(\iff \int_1^{\infty} f(t)\,dt \) converges. If \(\sum_{k=1}^{\infty} a_k \) converges then

\[
\int_1^{\infty} f(x)\,dx - a_1 \leq \sum_{k=1}^{\infty} a_k \leq \int_1^{\infty} f(x)\,dx.
\]

4. Let \(\rho = \lim sup |a_n|^{1/n} \). Then \(\sum_{k=0}^{\infty} a_k \) converges absolutely if \(\rho < 1 \) and diverges if \(\rho > 1 \).
5. Let \(\rho = \lim \frac{|a_{n+1}|}{|a_n|} \) if it exists. Then \(\sum_{k=0}^{\infty} a_k \) converges absolutely if \(\rho < 1 \) and diverges if \(\rho > 1 \).
6. Let \(\{a_n\} \) be a sequence with \(0 \leq a_{n+1} \leq a_n \). Then \(\sum_{k=0}^{\infty} (-1)^k a_k \) converges \(\iff a_n \to 0 \).

Let \(\sum_{k=0}^{\infty} c_k(x - a)^k \) be a power series and let

\[
R = \frac{1}{\lim sup |c_k|^{1/k}}.
\]

Then the power series converges on any interval \((r - a, r + a)\) where \(r < R \).

Taylor’s formula: If

\[
R_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]

then

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}
\]

for some \(c \) between \(a \) and \(x \).