Quiz 2 — 15 Points
Feb. 2, 2001

1. (5 points) Give a written definition for \(\lim_{x \to c} f(x) \). I’m not looking for a definition in terms of \(\epsilon \) and \(\delta \), but what it means in words.

\(\lim_{x \to c} f(x) \) represents the number (if there is one) that \(f(x) \) comes arbitrarily close to as \(x \) gets close to \(c \).

2. (5 points) Show the following using an \(\epsilon - \delta \) proof

\[
\lim_{x \to 3} (-2x + 7) = 1
\]

We start with \(|f(x) - L| < \epsilon\) and manipulate it to get \(|x - c| < \delta\)

\[
|f(x) - L| = | -2x + 7 - 1 | = | - 2(x - 3) | = | - 2||x - 3| = 2|x - 3| < \epsilon
\]

Therefore, for any \(\epsilon \) we can take \(\delta < \epsilon/2 \) to guarantee that \((-2x + 7) - 1| < \epsilon \) if \(|x - 3| < \delta\) which is the definition of the limit.

3. (5 points) Find the following limit using any rule we’ve shown in class. It might help to use some trigonometric identities first.

\[
\lim_{x \to 0} \left(\frac{2x \cot(x)}{\cos(x)} \right)
\]

Recall, \(\cot(x) = \cos(x)/\sin(x) \) so

\[
\lim_{x \to 0} \left(\frac{2x \cot(x)}{\cos(x)} \right) = \lim_{x \to 0} \left(\frac{2x \cos(x)}{\sin(x) \cos(x)} \right) = \lim_{x \to 0} \left(\frac{2x}{\sin(x)} \right) = 2 \lim_{x \to 0} \left(\frac{x}{\sin(x)} \right) = 2
\]