Exercises for Section 4.4: The Derivative

1. Find expressions for the partial derivatives of the following functions:

 (a) \(F(x, y) = f(g(x)k(y), g(x) + h(y)) \).

 (b) \(F(x, y, z) = f(g(x + y), h(y + z)) \).

 (c) \(F(x, y, z) = f(x^y, y^z, z^x) \).

 (d) \(F(x, y) = f(x, g(x), h(x, y)) \).

2. Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \). For \(v \in \mathbb{R}^n \), the limit
 \[
 \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t} ,
 \]
 if it exists, is denoted \(\partial f_a(v) \), and is called the **directional derivative** of \(f \) at \(a \) in the direction \(v \).

 (a) Show that \(\partial f_a(e_i) = \frac{\partial f}{\partial x^i}(a) \).

 Proof.
 \[
 \partial f_a(e_i) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = \lim_{t \to 0} \frac{f(a^1, \ldots, a^i + t, \ldots, a^n) - f(a^1, \ldots, a^n)}{t} = \frac{\partial f}{\partial x^i}(a).
 \]

 (b) Show that \(\partial f_a(cv) = c \cdot \partial f_a(v) \). (Scalar multipliers come out).

 Proof.
 \[
 \partial f_a(cv) = \lim_{t \to 0} \frac{f(a + t(cv)) - f(a)}{t} = \lim_{t \to 0} \frac{f(a + (ct)v) - f(a)}{t} = \lim_{\tau \to 0} \frac{f(a + \tau v) - f(a)}{\tau/c} \text{ (where } \tau = ct) = c \cdot \partial f_a(v).
 \]

 (c) If \(f \) is differentiable at \(a \), show that \(\partial f_a(v) = df_a(v) \), so therefore \(\partial f_a(u + v) = \partial f_a(u) + \partial f_a(v) \).

 Proof. Because \(f \) is differentiable at \(a \), we know that
 \[
 \lim_{h \to 0} \frac{|f(a + h) - f(a) - df_a(h)|}{\|h\|} = 0.
 \]
But this limit is 0 regardless of the way in which the vector \(h \) approaches 0. Let \(h = tv \). Then
\[
0 = \lim_{t \to 0} \frac{|f(a + tv) - f(a) - df_a(tv)|}{|tv|} = \lim_{t \to 0} \frac{|f(a + tv) - f(a) - t df_a(v)|}{|t||v|}.
\]
Multiplying both sides by \(|v|\) yields
\[
0 = \lim_{t \to 0} \frac{|f(a + tv) - f(a) - t df_a(v)|}{|t|}.
\]
Now we have a ratio of real numbers. The only way for the above limit to be 0 is if
\[
\lim_{t \to 0} f(a + tv) - f(a) - t df_a(v) = 0.
\]
We can separate this into
\[
df_a(v) = \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t} = \partial f_a(v).
\]
Note that \(\partial f_a(v) \) may exist for every direction \(v \), but \(f \) still fail to be differentiable, as is seen in Problem 3, below.

3. Let \(f \) be defined as in Problem ???. Show that \(\partial f_{(0,0)}(x) \) exists for all directions \(x \), but if \(g \neq 0 \), then
\[
\partial f_{(0,0)}(u + v) = \partial f_{(0,0)}(u) + \partial f_{(0,0)}(v)
\]
is not true for some \(u, v \in \mathbb{R}^2 \). Therefore, by Problem 2, above, \(f \) must not be differentiable.

Proof. Recall the definition of \(f \). Let \(g \) be a continuous real-valued function on the unit circle,
\[
S^1 = \{ x \in \mathbb{R}^2 : \|x\| = 1 \}
\]
such that \(g(0,1) = g(1,0) = 0 \) and \(g(-x) = -g(x) \). Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by
\[
f(x) = \begin{cases}
\|x\| \cdot g \left(\frac{x}{\|x\|} \right), & \text{if } x \neq 0, \\
0, & \text{if } x = 0.
\end{cases}
\]
Let \(x \) be any direction. Since scalars come out of the directional derivative, we may assume \(\|x\| = 1 \). Then,
\[
\partial f_{(0,0)}(x) = \lim_{t \to 0} \frac{f(tx) - f(0)}{t} = \lim_{t \to 0} \frac{|t|g \left(\frac{tx}{|t|} \right)}{t}.
\]
Note that \(g(-x) = -g(x) \), so we are left with
\[
\partial f_{(0,0)}(x) = g(x).
\]
If \(g \neq 0 \) then there is some point \((a, b) \in S^1\) such that \(g(a, b) \neq 0 \). However, let \(u = (a,0) \) and \(v = (0,b) \). Then \(\partial f_0(u + v) = g(a,b) \); while \(\partial f_0(u) = a \partial f_0(1,0) = ag(1,0) = 0 \) and \(\partial f_0(v) = b \partial f_0(0,1) = bg(0,1) = 0 \). Therefore
\[
\partial f_0(u + v) \neq \partial f_0(u) + \partial f_0(v),
\]
hence \(f \) is not differentiable at 0.
4. (a) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined as

\[
f(x) = \begin{cases}
 x^2 \sin(1/x), & \text{if } x \neq 0 \\
 0, & \text{if } x = 0
\end{cases}
\]

Show that \(f \) is differentiable at 0, but \(f' \) is not continuous at 0.

Proof. The claim is that \(df_0 = 0 \). Check:

\[
\lim_{h \to 0} \frac{|f(0 + h) - f(0) - 0|}{|h|} = \lim_{h \to 0} \frac{|h^2 \sin(1/h)|}{|h|} = \lim_{h \to 0} |h \sin(1/h)|.
\]

But this limit is indeed 0 by the Squeeze Theorem (bounded by the functions \(-|h|\) and \(|h|\). So \(f \) is differentiable at 0.

Away from 0, \(f'(x) = 2x \sin(1/x) - \cos(1/x) \). Therefore, \(f'(x) \) is not continuous at 0, because \(\lim_{x \to 0} f'(x) \) does not exist, let alone equal \(f'(0) \).

(b) Let \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \) be defined by

\[
g(x, y) = \begin{cases}
 (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & \text{if } (x, y) \neq 0 \\
 0, & \text{if } (x, y) = 0
\end{cases}
\]

Show that \(g \) is differentiable at \((0, 0)\), but \(\frac{\partial g}{\partial x} \) are not continuous at \((0, 0)\).

Proof. Again, we claim that \(df_0 = 0 \). Again we use the Squeeze Theorem.

\[
\lim_{h \to 0} \frac{|f(0 + h) - f(0) - 0|}{||h||} = \lim_{h \to 0} \frac{||h||^2 \sin(1/||h||)}{||h||} = \lim_{h \to 0} ||h|| \cdot |\sin(1/||h||)| = 0.
\]

Thus, \(f \) is differentiable at 0.

However,

\[
\frac{\partial f}{\partial x} = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right),
\]

and

\[
\frac{\partial f}{\partial y} = 2y \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{y}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right),
\]

neither of which have a limit at 0. \(\square \)

5. A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is **homogeneous** of degree \(m \) if \(f(tx) = t^m f(x) \) for all \(x \in \mathbb{R}^n \) and all \(t \in \mathbb{R} \). If \(f \) is also differentiable, show that

\[
\sum_{i=1}^{n} x^i \frac{\partial f}{\partial x^i}(x) = mf(x).
\]

Hint: Fix \(x \), let \(g(t) = f(tx) \). Compute \(g'(1) \).

Proof. Following the hint, we let \(x \in \mathbb{R}^n \), and define \(g(t) = f(tx) \). On the one hand, \(g'(1) = f'(x) \cdot x \). But on the other hand \(g(t) = t^m f(x) \), so \(g'(1) = mf(x) \). Therefore we have

\[
mf(x) = f'(x) \cdot x = \sum_{i=1}^{n} x^i \frac{\partial f}{\partial x^i}(x).
\]

\(\square \)