Sets and Functions

Recall the “Image/Pre-Image Theorem” from class:

Theorem (Image/Pre-Image). Suppose that \(f : A \rightarrow B \). Let \(C, C_1, \) and \(C_2 \) be subsets of \(A \), and let \(D, D_1, \) and \(D_2 \) be subsets of \(B \). Then the following are true:

1. Complete the proofs of the following parts of the Image/Pre-Image Theorem.

 Proof. (c) Let \(y \in f(C_1 \cap C_2) \). Then there exists a point \(x \) in \(C_1 \cap C_2 \) such that \(f(x) = y \). Since \(x \in C_1 \cap C_2 \), \(x \in \) \(\) and \(x \in \) \(\). But then \(f(x) \in \) \(\) and \(f(x) \in \) \(\), so \(y = f(x) \in \) \(\).

 (f) Let \(x \in f^{-1}(D_1 \cup D_2) \). Then \(f(x) \in \) \(\), so \(f(x) \in D_1 \) or \(f(x) \in D_2 \). If \(f(x) \in D_1 \), then \(x \in \) \(\). If \(f(x) \in D_2 \) then \(\). In either case, \(x \in f^{-1}(D_1) \cup f^{-1}(D_2) \).

 Conversely, suppose \(x \in \) \(\). Then \(x \in f^{-1}(D_1) \) or \(x \in f^{-1}(D_2) \). If \(x \in f^{-1}(D_1) \), then \(f(x) \in \) \(\). If \(x \in f^{-1}(D_2) \), then \(f(x) \in \) \(\). In either case, \(f(x) \in D_1 \cup D_2 \), so that \(x \in \) \(\).

2. Draw pictures to help you understand each part of the Image/Pre-Image Theorem.