Population Dynamics of Regulatory T-Lymphocytes

BRYNJA KOHLER AND JAMES P. KEENER
University of Utah, Salt Lake City, Utah

Introduction

- Our modeling goals are to better understand mechanisms behind the onset and progression of autoimmune disorders such as multiple sclerosis.
- A healthy immune response to a pathogen (typically an infectious microbe) includes an explosion in effector T cells (T_E).
- Regulatory T cells (T_R) play an important role in preventing autoimmune responses. Clinical intervention to boost regulatory cell response may be an effective therapy for autoimmune disease.
- We present a mathematical model for the T_R population and its influence on effector T cell (T_E) dynamics through interactions with antigen presenting cells (APCs).

Biological Background

- Naive CD4+ T cells must receive appropriate signalling from APCs to differentiate into the effector type.
- The activation state of the antigen presenting cell is critical in properly priming a T_E response.
- Feedback through cytokines or direct activity changes the balance of the APC activation state.

Steady State Analysis

- With I = 0, A_E = 0, T_E = 0, A_R = 1, T = T_E, T_R = T_E is a stable steady state provided that
- Stability of the trivial state → parameter constraint.
- Other steady states satisfy

\[T_E = \frac{h_R \cdot A_R}{h_E \cdot A_R + h_I \cdot A_I + h_T \cdot A_T} \]

\[T = \frac{h_R \cdot A_R + h_I \cdot A_I + h_T \cdot A_T}{h_E} + \theta \]

\[k_I A_I + A_E \frac{dT}{dt} + \frac{1}{2} (T^2 + \theta T) + \delta T_E \]

\[k_R A_R + h_R \cdot A_R + h_T \cdot A_T \]

- We can find steady states in the A_E, T_R plane.

The A_E, T_R plane

For a range of parameters two stable steady states are possible. One corresponding to low T_R and A_E, which is considered a regulatory state, and one corresponding to high T_R and A_E, which is a pro-active immune state.

Schematic diagram illustrating how APCs control T_R development and activation based on recent experimental findings [1].

Bifurcation Diagram

The saddle-node bifurcations indicated in the above phase planes are illustrated here.

Model Equations

\[A_I + A_E = 1 \]

\[\frac{dT}{dt} = h_E \cdot A_R \cdot A_T - h_R \cdot A_I \cdot T - h_T \cdot A_T \cdot T \]

\[\frac{dI}{dt} = -a \cdot I + h_I \cdot A_I + h_T \cdot A_T \cdot T \]

\[\frac{dA_E}{dt} = -a \cdot A_E + h_E \cdot A_E \cdot T + \alpha \cdot I \]

\[\frac{dA_R}{dt} = h_R \cdot A_R \cdot T - \beta \cdot A_R + \gamma \cdot A_E \]

\[\frac{dA_T}{dt} = -h_R \cdot A_R \cdot T - \delta \cdot A_T \]

Model Assumptions

- Cells “well-mixed” as in a lymph node.
- Total antigen presentation remains constant during the time modeled.
- Non-linear proliferation rate of T_E due to cytokine production (IL-2).
- Non-linear death rate of T_E due to activation induced cell death (by Fas/Fas-ligand interactions), but \(\mu \) is small.
- Inflammation/infection (I) is a given time-dependent function, and treated like a parameter.

Implications

- Consistent with experiment: a critical dose of Freud’s adjuvant required for activating and immune responses.
- System can exhibit hysteresis. The implications here require a more precise notion of inflammation.
- Parameter constraints derived in the stability condition.
- Parameter sensitivity, particularly to \(\gamma \) and \(K \), imply there may necessarily be additional suppression mechanisms at work to make the switch robust.

References

Acknowledgements

Thanks to Robert Fujinami, Fred Adler, and the Math Physiology Group at the University of Utah.