In the following exercise assume we have a collection \mathcal{Y} of metric spaces and projections $\pi_{Z}(X) \subset Z$ for distinct $X, Z \in \mathcal{Y}$ satisfying axioms (P1), $\left(\mathrm{P} 2++\right.$), (P3) for some $\theta \geq 0$ (where we put $d_{Y}(X, Z)=: \operatorname{diam}\left(\pi_{Y}(X) \cup\right.$ $\left.\left.\pi_{Y}(Z)\right)\right):$
(P1) $\operatorname{diam} \pi_{Z}(X) \leq \theta$,
$(\mathrm{P} 2++) d_{Y}(X, Z)>\theta$ implies $d_{X}(Y, Z) \leq \theta$,
(P3) $\left\{W \mid d_{W}(X, Z)>\theta\right\}$ is finite.
Also assume $K \geq 3 \theta$.

1. (Triangles of standard paths) $\mathcal{Y}_{K}(X, Y) \cup \mathcal{Y}_{K}(Y, Z)$ contains all but at most two elements of $\mathcal{Y}(X, Z)$ and if there are two they are consecutive.

2. Let $n=\left|\mathcal{Y}_{K}(X, Z)\right|+1$. Then

$$
\left\lfloor\frac{n}{2}\right\rfloor+1 \leq d_{\mathcal{P}_{K}(\mathcal{Y})}(X, Z) \leq n
$$

Thus standard paths are quasi-geodesics and we have the "distance formula"

$$
d_{\mathcal{P}_{K}(\mathcal{Y})}(X, Z) \asymp\left|\mathcal{Y}_{K}(X, Z)\right|
$$

3. If $d_{Y}(X, Z)$ is sufficiently large (say $>10 K$) then every geodesic in $\mathcal{P}_{K}(\mathcal{Y})$ from X to Z passes through Y.
4. (Bounded Geodesic Image Theorem) There is M such that if $X_{0}, X_{1}, \cdots, X_{n}$ is a geodesic in $\mathcal{P}_{K}(\mathcal{Y})$ not passing through Y then $\operatorname{diam}\left(\cup_{i} \pi_{Y}\left(X_{i}\right)\right) \leq M$.

Here are some hints.

1. Given $W \in \mathcal{Y}_{K}(X, Z)$ either $d_{W}(X, Y)>\theta$ or $d_{W}(Y, Z)>\theta$. If the former holds show that all $W^{\prime}<W$ are in $\mathcal{Y}_{K}(X, Y)$.
2. If $d_{\mathcal{P}_{K}(\mathcal{Y})}(X, Z)=n$ need to show standard path has length $\leq 2 n-1$. Induct on n. Choose Y on a geodesic between X and Z and draw the triangle of standard paths.
3. If $d_{\mathcal{P}_{K}(\mathcal{Y})}\left(X_{i}, Y\right) \geq 3$ for all i there is no progress in Y at all, but could have $\leq 5 X_{i}$'s with $d_{\mathcal{P}_{K}(\mathcal{Y})}\left(X_{i}, Y\right) \geq 2$ and then each time progress is $\leq K$.
4. Use that standard paths are quasi-geodesics. Break up the given geodesic into 3 subpaths. The middle path has bounded length and the other two have distance ≥ 3 from Y.
