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Abstract

This is the first in a series of papers giving an alternate approach
to Zlil Sela’s work on the Tarski problems. The present paper is an
exposition of work of Kharlampovich-Myasnikov and Sela giving a
parametrization of Hom(G, F) where G is a finitely generated group
and F is a non-abelian free group.
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1 The Main Theorem

This is the first of a series of papers giving an alternative approach to Zlil
Sela’s work on the Tarski problems [31, 30, 32, 24, 25, 26, 27, 28]. The present
paper is an exposition of the following result of Kharlampovich-Myasnikov
[9, 10] and Sela [30]:

Theorem. Let G be a finitely generated non-free group. There is a finite
collection {qi : G → Γi} of proper quotients of G such that, for any homo-
morphism f from G to a free group F , there is α ∈ Aut(G) such that fα
factors through some qi.

A more precise statement is given in the Main Theorem. Our approach,
though similar to Sela’s, differs in several aspects: notably a different measure
of complexity and a more geometric proof which avoids the use of the full
Rips theory for finitely generated groups acting on R-trees, see Section 7.
We attempted to include enough background material to make the paper
self-contained.

Notation 1.1. F is a fixed non-abelian free group. Finitely generated (finitely
presented) is abbreviated fg (respectively fp).

The main goal of [30] is to give an answer to the following:

Question 1. Let G be an fg group. Describe the set of all homomorphisms
from G to F.

Example 1.2. When G is a free group, we can identify Hom(G,F) with the
cartesian product Fn where n = rank(G).

Example 1.3. If G = Zn, let µ : Zn → Z be the projection to one of the
coordinates. If h : Zn → F is a homomorphism, there is an automorphism
α : Zn → Zn such that hα factors through µ. This provides an explicit
(although not 1-1) parametrization of Hom(G,F) by F×Hom(G,Z).

Example 1.4. When G is the fundamental group of a closed genus g orientable
surface, let µ : G → Fg denote the homomorphism to a free group of rank
g induced by the (obvious) retraction of the surface to the rank g graph.
It is a folk theorem1 that for every homomorphism f : G → F there is an
automorphism α : G → G (induced by a homeomorphism of the surface) so
that fα factors through µ. The theorem was generalized to the case whenG is

1see [35, 33]

2



the fundamental group of a non-orientable closed surface by Grigorchuk and
Kurchanov [7]. Interestingly, in this generality the single map µ is replaced
by a finite collection {µ1, · · · , µk} of maps from G to a free group F . In
other words, for all f ∈ Hom(G,F) there is α ∈ Aut(G) induced by a
homeomorphism of the surface such that fα factors through some µi.

Another goal is to understand the class of groups that naturally appear
in the answer to the above question, these are called limit groups.

Definition 1.5. Let G be an fg group. A sequence {fi} in Hom(G,F) is stable
if, for all g ∈ G, the sequence {fi(g)} is eventually always 1 or eventually
never 1. The stable kernel of {fi}, denoted Ker−−→ fi, is

{g ∈ G | fi(g) = 1 for almost all i}.

An fg group Γ is a limit group if there is an fg group G and a stable sequence
{fi} in Hom(G,F) so that Γ ∼= G/Ker−−→ fi.

Remark 1.6. One can view each fi as inducing an action of G on the Cayley
graph of F, and then can pass to a limiting R-tree action (after a subse-
quence). If the limiting tree is not a line, then Ker−−→ fi is precisely the kernel
of this action and so Γ acts faithfully. This explains the name.

Definition 1.7. An fg group Γ is residually free if for every element γ ∈ Γ
there is f ∈ Hom(Γ,F) such that f(γ) 6= 1. It is ω-residually free if for every
finite subset X ⊂ Γ there is f ∈ Hom(Γ,F) such that f |X is injective.

Exercise 2. Free groups and free abelian groups are ω-residually free.

Exercise 3. The fundamental group of nP2 for n = 1, 2, or 3 is not ω-
residually free, see [13].

Exercise 4. Every ω-residually free group is a limit group.

Exercise 5. An fg subgroup of an ω-residually free group is ω-residually free.

Exercise 6. Every non-trivial abelian subgroup of an ω-residually free group
is contained in a unique maximal abelian subgroup. For example, F × Z is
not ω-residually free for any non-abelian F .

Lemma 1.8. Let G1 → G2 → · · · be an infinite sequence of epimorphisms
between fg groups. Then the sequence

Hom(G1,F)← Hom(G2,F)← · · ·

eventually stabilizes (consists of bijections).
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Proof. Embed F as a subgroup of SL2(R). That the corresponding sequence
of varieties Hom(Gi, SL2(R)) stabilizes follows from algebraic geometry, and
this proves the lemma.

Corollary 1.9. A sequence of epimorphisms between (ω−)residually free
groups eventually stabilizes.

Lemma 1.10. Every limit group is ω-residually free.

Proof. Let Γ be a limit group, and let G and {fi} be as in the definition.
Without loss, G is fp. Now consider the sequence of quotients

G→ G1 → G2 → · · · → Γ

obtained by adjoining one relation at a time. If Γ is fp the sequence termi-
nates, and in general it is infinite. Let G′ = Gj be such that Hom(G′,F) =
Hom(G,F). All but finitely many fi factor through G′ since each added
relation is sent to 1 by almost all fi. It follows that these fi factor through
Γ and each non-trivial element of Γ is sent to 1 by only finitely many fi. By
definition, Γ is ω-residually free.

Definition 1.11. A GAD2 of a group G is a finite graph of groups decom-
position of G with abelian edge groups in which some of the vertices are
designated QH3 and some others are designated abelian, and the following
holds.

• A QH-vertex group is the fundamental group of a compact surface S
with boundary and the boundary components correspond to the in-
cident edge groups (they are all infinite cyclic). Further, S carries a
pseudoAnosov homeomorphism (so S is a torus with 1 boundary com-
ponent of χ(S) ≤ −2).

• An abelian vertex group A is abelian (!). The subgroup P (A) of A
generated by incident edge groups is the peripheral subgroup. P (A) is
the subgroup of A that dies under every homomorphism from A to Z

that kills P (A), i.e.

P (A) = ∩{Ker(f) | f ∈ Hom(A,Z), P (A) ⊂ Ker(f)}.

2Generalized Abelian Decomposition
3Quadratically Hanging
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The non-abelian non-QH vertices are rigid.

Remark 1.12. If ∆ is a GAD for a fg group G, and if A is an abelian vertex
group of ∆, then there is an epimorphism G→ A/P (A). Hence, A/P (A) is
fg. Since it is also torsion free, A/P (A) is free. It follows that A = A0⊕P (A)
with A0 a retract of G.

Definition 1.13. The modular group Mod(∆) associated to a GAD ∆ of G is
the subgroup of Aut(G) generated by

• inner automorphisms of G,

• Dehn twists4 in elements of G that centralize an edge group of ∆,

• unimodular5 automorphisms of abelian vertex groups that are identity
on peripheral subgroups and all other vertex groups, and

• automorphisms induced by homeomorphisms of surfaces S underlying
QH-vertices that fix all boundary components. If S is closed and ori-
entable, we require the homeomorphisms to be orientation-preserving6.

The modular group of G, denoted Mod(G), is the subgroup of Aut(G) gen-
erated by Mod(∆) for all GAD’s ∆ of G. At times it will be convenient to
view Mod(G) as a subgroup of Out(G). In particular, we will say that an
element of Mod(G) is trivial if it is an inner automorphism.

Definition 1.14. We define a hierarchy of fg groups – if a group belongs to
this hierarchy it is called a CLG7.

Level 0 of the hierarchy consists of fg free groups.
A group Γ belongs to level ≤ n+ 1 iff either it has a free product decom-

position Γ = Γ1 ∗ Γ2 with Γ1 and Γ2 of level ≤ n or it has a homomorphism
ρ : Γ→ Γ′ with Γ′ of level ≤ n and it has a GAD such that

• ρ is injective on the peripheral subgroup of each abelian vertex group.

• ρ is injective on each edge group E and at least one of the images of E
in a vertex group of the one-edged splitting induced by E is a maximal
abelian subgroup.

4See Section 3 for a definition.
5The induced automorphism of A/P (A) has determinant 1.
6We will want our homeomorphisms to be products of Dehn twists.
7Constructible Limit Group
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• The image of each QH-vertex group is a non-abelian subgroup of H.

• For every rigid vertex group B, ρ is injective on the “envelope” B̃ of
B, defined by first replacing each abelian vertex with the peripheral
subgroup and then letting B̃ be the subgroup of the resulting group
generated by B and by the centralizers of incident edge-groups.

Example 1.15. A free abelian group of rank n is a CLG of level n − 1. The
fundamental group of a closed surface S with χ(S) ≤ −2 is a CLG of level
1. For example, an orientable genus 2 surface is a union of 2 punctured tori
and the retraction to one of them determines ρ. Similarly, a non-orientable
genus 2 surface is the union of 2 punctured Klein bottles.

Example 1.16. Start with the circle and attach to it 3 surfaces with one
boundary component, with genera 1, 2, and 3 say. There is a retraction to the
surface of genus 3 that is the union of the attached surfaces of genus 1 and 2.
This retraction sends the genus 3 attached surface say to the genus 2 attached
surface by “pinching a handle”. The GAD has a central vertex labeled Z

and there are 3 edges that emanate from it, also labeled Z. Their other
endpoints are QH-vertex groups. The map induced by retraction satisfies
the requirements so the fundamental group of the 2-complex built is a CLG.

Example 1.17. Choose a primitive8 w in the fg free group F and form Γ =
F ∗Z F , the double of F along 〈w〉 (so 1 ∈ Z is identified with w on both
sides). There is a retraction Γ → F that satisfies the requirements (both
vertices are rigid), so Γ is a CLG.

The following can be proved by induction on levels.

Exercise 7. Every CLG is fp, in fact coherent. Every fg subgroup of a CLG is
a CLG. (Hint: a graph of coherent groups over fg abelian groups is coherent.)

Exercise 8. Every abelian subgroup of a CLG Γ is fg and free, and there is
a uniform bound to the rank. There is a finite K(Γ, 1).

Exercise 9. Every non-abelian, freely indecomposable CLG admits a “prin-
cipal splitting” over Z: A∗ZB or A∗Z with A, B non-cyclic, and in the latter
case Z is maximal abelian in the whole group.

Exercise 10. Every CLG is ω-residually free.

8no proper root
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The last exercise is more difficult than the others. It explains where the
conditions in the definition of CLG come from. The idea is to construct
homomorphisms G → F by choosing complicated modular automorphisms
of G, composing with ρ and then with a homomorphism to F that comes
from the inductive assumption.

Example 1.18. Consider an index 2 subgroup H of an fg free group F and
choose g ∈ F \ H. Suppose that G := H ∗〈g2〉 〈g〉 is freely indecomposable
and admits no principal cyclic splitting. There is the obvious map G → F ,
but G is not a limit group (Exercise 9 and Theorem 1.25). This shows the
necessity of the last condition in the definition of CLG’s. 9

Definition 1.19. A factor set for a group G is a finite collection of proper
quotients {qi : G → Gi} such that if f ∈ Hom(G,F) then there is α ∈
Mod(G) such that fα factors through some qi.

Main Theorem ([9, 10, 31]). Let G be an fg group that is not free. Then,
G has a factor set {qi : G → Γi} with each Γi a limit group. If G is not a
limit group, we can always take α = Id.

Corollary 1.20. Iterating the construction of the Main Theorem (for Γi’s
etc.) yields a finite tree of groups terminating in groups that are free.

Proof. If Γ → Γ′ is a proper epimorphism between limit groups, then since
limit groups are residually free, Hom(Γ′,F) ( Hom(Γ,F). We are done by
Lemma 1.8.

Definition 1.21. The tree of groups and epimorphisms provided by Corol-
lary 1.20 is called an MR-diagram10 for G (with respect to F). If

G
q
→ Γ1

q1

→ Γ2
q2

→ · · ·
qm−1

→ Γm

is a branch of an MR-diagram and if f ∈ Hom(G,F) then we say that f
MR-factors through this branch if there are α ∈ Mod(G) (which is Id if G
is not a limit group), αi ∈ Mod(Γi), for 1 ≤ i < m, and fm ∈ Hom(Γm,F)
(recall Γm is free) such that f = fmqm−1αm−1 · · · q1α1qα.

9The element g := a2b2a−2b−1 ∈ H := 〈a, b2, bab−1〉 ⊂ F := 〈a, b〉 is such an example.
This can be seen from the fact that if 〈x, y, z〉 denotes the displayed basis for H , then
g2 = x2yx−2y−1z2yz−2 is Whitehead reduced and each basis element occurs at least 3
times.

10for Makanin-Razborov, cf. [14, 15, 19].
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Remark 1.22. The key property of an MR-diagram for G is that, for f ∈
Hom(G,F), there is a branch of the diagram through which f MR-factors.
This provides an answer to Question 1 in that Hom(G,F) is parametrized
by branches of an MR-diagram and, for each branch as above, Mod(G) ×
Mod(Γ1) × · · · ×Mod(Γm−1) × Hom(Γm,F). Note that if Γm has rank n,
then Hom(Γm,F) ∼= Fn.

In [28], Sela constructed an MR-diagram for a finitely generated group
relative to a word hyperbolic group. In her thesis [1], Emina Alibegović did
the same relative to a limit group.

Corollary 1.23. Abelian subgroups of limit groups are fg and free.

We first need a lemma.

Lemma 1.24. Suppose that Γ is a limit group with factor set {qi : Γ→ Gi}.
If H is a (not necessarily fg) subgroup of Γ such that every homomorphism
H → F factors through some qi|H (pre-compositions by automorphisms of Γ
not needed) then, for some i, qi|H is injective.

Proof. Suppose not and let 1 6= hi ∈ Ker(qi|H). Since Γ is a limit group,
there is f ∈ Hom(Γ,F) that is injective on {1, h1, · · · , hn}. On the other
hand, f |H factors through some qi|H and so hi = 1, a contradiction.

Proof of Corollary 1.23. Let A be an abelian subgroup of a limit group Γ.
Since residually free groups are torsion free, it is enough to show that A is
fg. It follows from the definition that, for α ∈ Mod(Γ), there is a finitely
generated subgroup Aα of A and a retraction rα : Γ → Aα such that α|A is
trivial11 on A ∩Ker(rα). See Remark 1.12.

Consider the homomorphism Πα∈Mod(Γ)rα : Γ→ ΠαAα. Since Γ is fg, the
image of Πrα is fg. Hence, A = A0 ⊕A1 where A1 is fg and each rα is trivial
on A0. Let {qi : Γ → Γi} be a factor set for Γ with each Γi a limit group.
By Lemma 1.24, A0 injects into some Γi. Since Hom(Γi,F) ( Hom(Γ,F),
we may conclude by induction that A0 and hence A is fg.

In Section 6, we will also show:

Theorem 1.25. For an fg group G, the following are equivalent.

1. G is a CLG.

11agrees with the restriction of an inner automorphism of Γ.
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2. G is ω-residually free.

3. G is a limit group.

The fact that ω-residually free groups are CLG’s is due to O. Kharlam-
povich and A. Myasnikov [11]. V.N. Remeslennikov [21] showed that limit
groups act freely on Rn-trees, also see [8]. Kharlampovich-Myasnikov [10]
prove that limit groups act freely on Zn-trees where Zn is lexicographically
ordered. Remeslennikov [20] also demonstrated that 2-residually free groups
are ω-residually free.

2 The Main Proposition

Definition 2.1. An fg group is generic if it is torsion free, freely indecompos-
able, non-abelian, and not a closed surface group.

The Main Theorem will follow from the next proposition.

Main Proposition. Generic limit groups have factor sets.

Before proving this proposition, we show how it implies the Main Theo-
rem.

Definition 2.2. Let G and G′ be fg groups. The minimal number of gen-
erators for G is denoted µ(G). We say that G is simpler than G′ if there
is an epimorphism G′ → G and either µ(G) < µ(G′) or µ(G) = µ(G′) and
Hom(G,F) ( Hom(G′,F).

Remark 2.3. It follows from Lemma 1.8 that every sequence {Gi} with Gi+1

simpler than Gi is finite.

Definition 2.4. If G is an fg group, then by RF (G) denote the universal
residually free quotient of G, i.e. the quotient of G by the (normal) subgroup
consisting of elements killed by every homomorphism G→ F.

Remark 2.5. Hom(G,F) = Hom(RF (G),F) and for every proper quotient
G′ of RF (G), Hom(G′,F) ( Hom(G,F).

The Main Proposition implies the Main Theorem. Suppose that G is an fg
group that is not free. By Remark 2.3, we may assume that the Main The-
orem holds for groups that are simpler than G. By Remark 2.5, we may
assume that G is residually free, and so also torsion free. Examples 1.3
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and 1.4 show that the Main Theorem is true for abelian and closed surface
groups. If G = U ∗V with U non-free and freely indecomposable and with V
non-trivial, then U is simpler than G. So, G has a factor set {qi : U → Li},
and {qi ∗ IdV : U ∗ V → Li ∗ V } is a factor set for G.

If G is not a limit group, then there is a finite subset {gi} of G such that
any homomorphism G → F kills one of the gi. We then have a factor set
{G → Hi := G/〈〈gi〉〉}. Since Hom(Hi,F) ( Hom(G,F), by induction the
Main Theorem holds for Hi and so for G.

If G is generic and a limit group, then the Main Proposition gives a factor
set {qi : G → Gi} for G. Since G is residually free, each Gi is simpler than
G. We are assuming that the Main Theorem then holds for each Gi and this
implies the result for G.

3 Review: Measured laminations and R-trees

The proof of the Main Proposition will use a theorem of Sela describing the
structure of certain real trees. This in turn depends on the structure of
measured laminations. In Section 7, we will give an alternate approach that
only uses the lamination results. First these concepts are reviewed. A more
leisurely review with references is [2].

3.1 Laminations

Definition 3.1. A measured lamination Λ on a simplicial 2-complexK consists
of a closed subset |Λ| ⊂ |K| and a transverse measure µ. |Λ| is disjoint from
the vertex set, intersects each edge in a Cantor set or empty set, and intersects
each 2-simplex in 0, 1, 2, or 3 families of straight line segments spanning
distinct sides. µ assigns a non-negative number

∫

I
µ to every interval I in an

edge whose endpoints are outside |Λ|. There are two conditions:

1. (compatibility) If two intervals I, J in two sides of the same triangle
∆ intersect the same components of |Λ| ∩∆ then

∫

I
µ =

∫

J
µ.

2. (regularity) µ restricted to an edge is equivalent under a “Cantor
function” to the Lebesgue measure on an interval in R.

A path component of |Λ| is a leaf.
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Two measured laminations on K are considered equivalent if they assign
the same value to each edge.

Proposition 3.2 (Morgan-Shalen [16]). Let Λ be a measured lamination
on K. Then

Λ = Λ1 t · · · t Λk

so that each Λi is either minimal (each leaf is dense in |Λi|) or simplicial
(each leaf is compact, a regular neighborhood of |Λi| is an I-bundle over a
leaf and |Λi| is a Cantor set subbundle).

There is a theory, called the Rips machine, for analyzing minimal mea-
sured laminations. It turns out that there are only 3 qualities.

Example 3.3 (Surface type). Let S be a compact hyperbolic surface (possi-
bly with totally geodesic boundary). If S admits a pseudoAnosov homeo-
morphism then it also admits filling measured geodesic laminations – these
are measured laminations Λ (with respect to an appropriate triangulation)
such that each leaf is a biinfinite geodesic and all complementary compo-
nents are ideal polygons or crowns. Now to get the model for a general
surface type lamination attach finitely many annuli S1 × I with lamination
S1 × (Cantor set) to the surface along arcs transverse to the geodesic lam-
ination. If these additional annuli do not appear then the lamination is of
pure surface type. See Figure 1.

Example 3.4 (Toral type). Fix a closed interval I ⊂ R, a finite collection of
pairs (Ji, J

′
i) of closed intervals in I, and isometries γi : Ji → J ′

i so that:

1. If γi is orientation reversing then Ji = J ′
i and the midpoint is fixed by

γi.

2. The length of the intersection of all Ji and J ′
i (over all i) is more than

twice the translation length of each orientation preserving γi and the
fixed points of all orientation reversing γi are in the middle third of the
intersection.

Now glue a foliated band for each pair (Ji, J
′
i) so that following the band

maps Ji to J ′
i via γi. Finally, using Cantor functions blow up the foliation

to a lamination. There is no need to explicitly allow adding annuli as in the
surface case since they correspond to γi = Id. The subgroup of Isom(R)
generated by the extensions of the γi’s is the Bass group. The lamination is
minimal iff its Bass group is not discrete.
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Figure 1: A surface with an additional annulus and some pieces of leaves.

Example 3.5 (Thin type). This is the most mysterious type of all. It was
discovered by Gilbert Levitt, see [12]. In the “pure” case (with no annuli
attached) the leaves are 1-ended trees (so this type naturally lives on a 2-
complex, not on a manifold). By performing certain moves (sliding, collaps-
ing) that don’t change the homotopy type (respecting the lamination) of the
complex one can transform it to one that contains a (thin) band. This band
induces a non-trivial free product decomposition of π1(K), assuming that
the component is a part of a resolution of a tree (what’s needed is that loops
that follow leaves until they come close to the starting point and then they
close up are non-trivial in π1).

In the general case we allow additional annuli to be glued, just like in the
surface case. Leaves are then 1-ended trees with circles attached. Again, if
there are no additional annuli then the lamination is pure.

Theorem 3.6 (“Rips machine”). Let Λ be a measured lamination on a
finite 2-complex K, and let Λi be a minimal component of Λ. There is a
neighborhood N (we refer to it as a “standard” neighborhood) of |Λi|, a finite
2-complex N ′ with measured lamination Λ′ as in one of 3 model examples,
and there is a π1-isomorphism f : N → N ′ such that f ∗(Λ′) = Λ.

We refer to Λi as being of surface, toral, or thin type.
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3.2 Dual trees

Let G be an fg group and let K̂ be a simply connected 2-dimensional sim-
plicial G-complex so that, for each simplex ∆ of K̂, Stab(∆) = Fix(∆).12

Let Λ̂ be a G-invariant measured lamination in K̂. There is an associated
real G-tree T (Λ̂) constructed as follows. Consider the pseudo-metric on K̂
obtained by minimizing the Λ̂-length of paths between points. The real tree
T (Λ̂) is the associated metric space13. There is a natural map K̂ → T (Λ̂)
and we say that (K̂, Λ̂) is a model for T (Λ̂) if

• for each edge ê of K̂, T (Λ̂ | ê)→ T (Λ̂) is an isometry (onto its image)
and

• the quotient K̂/G is compact.

If a tree T admits a model (K̂, Λ̂), then we say that T is geometric and that T
is dual to (K̂, Λ̂). This is denoted T = Dual(K̂, Λ̂). We will use the quotient
(K,Λ) := (K̂, Λ̂)/G with simplices decorated (or labeled) with stabilizers to
present a model and sometimes abuse notation by calling (K,Λ) a model for
T .

Remark 3.7. Often the G-action on K̂ is required to be free. We have relaxed
this condition in order to be able to consider actions of fg groups. For exam-
ple, if T is a minimal14, simplicial G-tree (with the metric where edges have
length one15) then there is a lamination Λ̂ in T such that Dual(T, Λ̂) = T .
16

If S and T are real G-trees, then an equivariant map f : S → T is a
morphism if every compact segment of S has a finite partition such that the
restriction of f to each element is an isometry or trivial17.

If S is a realG-tree withG fp, then there is a geometric realG-tree T and a
morphism f : T → S. The map f is obtained by constructing an equivariant
map to S from the universal cover of a 2-complex with fundamental group

12Stab(∆) := {g ∈ G | g∆ = ∆} and Fix(∆) := {g ∈ G | gx = x, x ∈ ∆}
13identify points of pseudo-distance 0
14no proper invariant subtrees
15This is called the simplicial metric on T .
16The metric and simplicial topologies on T don’t agree unless T is locally finite. But,

the action of G is by isomorphisms in each structure. So, we will be sloppy and ignore
this distinction.

17has image a point
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G. In general, if (K̂, Λ̂) is a model for T and if T → S is a morphism then
the composition K̂ → T → S is a resolution of S.

3.3 The structure theorem

Here we discuss a structure theorem (see Theorem 3.13) of Sela for certain
actions of an fg torsion free group G on real trees. Among other restrictions,
the actions we consider will be required to be stable18, have abelian (non-
degenerate) arc stabilizers, and have trivial tripod19 stabilizers. There is a
short list of basic examples.

Example 3.8 (Pure surface type). A real G-tree T is of pure surface type if
it is dual to the universal cover of (K,Λ) where K is a compact surface and
Λ is of pure surface type. We will usually use the alternate model where
boundary components are crushed to points and are labeled Z.

Example 3.9 (Linear). The tree T is linear if G is abelian, T is a line and
there an epimorphism G → Zn such that G acts on T via a free Zn-action
on T . In particular, T is geometric and is dual to (K̂, Λ̂) where K̂ is the
universal cover of the 2-skeleton of an n-torus K. For simplicity, we often
complete K with its lamination to the whole torus. This is a special case of
a toral lamination.

Example 3.10 (Pure thin). The tree T is pure thin if it is dual to the universal
cover of a finite 2-complex K with a pure thin lamination Λ. If T is pure thin
then G ∼= F ∗V1∗· · ·∗Vm where F is non-trivial and fg free and {V1, · · · , Vm}
represents the conjugacy classes of point stabilizers in T .

Example 3.11 (Simplicial). The tree T is simplicial if it is dual to (K̂, Λ̂)
where all leaves of Λ := Λ̂/G are compact. If T is simplicial it is convenient
to crush the leaves and complementary components to points in which case
K̂ becomes a tree isomorphic to T .

If K is a graph of 2-complexes with underlying graph of groups G20 then
there is a simplicial π1(G)-space K̂(K) obtained by gluing copies of K̂e × I
and K̂v’s equipped with a simplicial π1(G)-map K̂(K) → T (G) that crushes
to points copies of K̂e × {point} as well as the K̂v’s.

18every (non-degenerate) arc in T contains a subarc α with the property that every
subarc of α has the same stabilizer as α

19a cone on 3 points
20for each bonding map φe : Ge → Gv there are simplicial Ge- and Gv-complexes K̂e

and K̂v together with a φe-equivariant simplicial map Φe : K̂e → K̂v

14



Definition 3.12. A real G-tree is very small if it is non-trivial21, minimal,
stable, has abelian (non-degenerate) arc stabilizers, and has trivial (non-
degenerate) tripod stabilizers.

Theorem 3.13 ([29, Section 3]). Let T be a real G-tree. Suppose that G
is generic and that T is very small. Then, T is geometric.

Moreover, there is a model for T that is a graph of spaces such that each
edge space is a point with non-trivial abelian stabilizer and each vertex space
with restricted lamination is either

• (point) a point with non-trivial stabilizer,

• (linear) a non-faithful action of an abelian group on the (2-skeleton of
the) universal cover of a torus with an irrational 22 lamination, or

• (surface) a faithful action of a free group on the universal cover of a sur-
face with non-empty boundary (represented by points with Z-stabilizer)
with a lamination of pure surface type.

Remark 3.14. For an edge space {point}, the restriction of the lamination
to {point} × I may or may not be empty. It can be checked that between
any two points in models as in Theorem 3.13 there are Λ-length minimizing
paths. Thin pieces do not arise because we are assuming our group is freely
indecomposable.

Remark 3.15. Theorem 3.13 holds more generally if the assumption that
G is freely indecomposable is replaced by the assumption that G is freely
indecomposable rel point stabilizers, i.e. if V is the subset of G of elements
acting elliptically23 on T , then G cannot be expressed non-trivially as A ∗B
with all g ∈ V conjugate into A ∪ B.

We can summarize Theorem 3.13 by saying that T is a non-trivial finite
graph of simplicial trees, linear trees, and trees of pure surface type (over
trivial trees). See Figure 2.

Corollary 3.16. If G and T satisfy the hypotheses of Theorem 3.13, then
G admits a non-trivial GAD ∆. Specifically, ∆ may be taken to be the GAD

induced by the boundary components of the surface vertex spaces and the

21no fixed point
22no essential loops in leaves
23fixing a point
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V W

A

C

B

A

Figure 2: A model with a surface vertex space, a linear vertex space, and 2
rigid vertex spaces (the black boxes). The groups A, B and C are abelian
with A and B infinite cyclic. Pieces of some leaves are also indicated by wavy
lines and dots. For example, the dot on the edge labeled C is one leaf in a
Cantor set of leaves.

simplicial edges of the model. The surface vertex spaces give rise to the QH-
vertices of ∆ and the linear vertex spaces give rise to the abelian vertices of
∆.

3.4 Spaces of trees

Let G be a non-trivial fg group and let A(G) be the set of minimal real G-
trees endowed with the Gromov topology. Recall, see [17, 18, 4], that in the
Gromov topology lim{(Tn, dn)} = (T, d) if and only if: for any finite subset
K of T , any ε > 0, and any finite subset P of G, for sufficiently large n, there
are subsets Kn of Tn and bijections fn : Kn → K such that

|d(gfn(sn), fn(tn))− dn(gsn, tn)| < ε

for all sn, tn ∈ Kn and all g ∈ P . Intuitively, larger and larger pieces of the
limit tree with their restricted actions appear in nearby trees.

Let PA(G) be the set of non-trivial real G-trees modulo homothety, i.e.
(T, d) ∼ (T, λd) for λ > 0. Fix a basis for F and let TF be the corresponding
Cayley graph. Give TF the simplicial metric. So, a non-trivial homomorphism
f : G→ F determines Tf ∈ PA(G). The space of interest is the closure T (G)
of {Tf | 1 6= f ∈ Hom(G,F)} in PA(G).
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Proposition 3.17 ([30]). Every sequence of non-trivial homomorphisms
from G to F has a subsequence {fn} such that limTfn

= T in T (G). Further,

1. T is non-trivial.

2. If T is not a line, then Ker−−→ fn is precisely the kernel Ker(T ) of the
action of G on T .

3. The stabilizer StabG/Ker(T )(I) in G/Ker(T ) of every (non-degenerate
and perhaps non-compact) arc I ⊂ T is free abelian. Moreover, if
FixG/Ker(T )(I) 6= 1 then for every subarc J ⊂ I we have equality
FixG/Ker(T )(I) = FixG/Ker(T )(J). In particular, T is stable.

4. The stabilizer in G/Ker(T ) of every tripod is trivial.

5. T is a line iff almost all fn have non-trivial abelian image.

Proof. The first statement is easy if the sequence contains infinitely many
homomorphisms with abelian image. Otherwise it follows from Paulin’s Con-
vergence Theorem [17]. The further items are exercises in Gromov conver-
gence.

Caution. Sela goes on the claim that stabilizers of minimal components of
the limit tree are trivial (see Lemma 1.6 of [30]). However, it is possible to
construct limit actions on the amalgam of a rank 2 free group F2 and Z3 over
Z where one of the generators of Z3 is glued to the commutator c of basis
elements of F2 and where the Z3 acts non-simplicially on a linear subtree
with c acting trivially on the subtree but not in the kernel of the action.
As a result, some of his arguments, though easily completed, are not fully
complete.

Corollary 3.18. 1. T (G) is compact.

2. The subspace L(G) of T (G) consisting of linear trees is clopen24.

3. For g ∈ G, U(g) := {T ∈ T (G) \ L(G) | g ∈ Ker(T )} is clopen.

Remark 3.19. There is another common topology on A(G), the length topol-
ogy. For T ∈ A(G) and g ∈ G, let ‖g‖T denote the minimum distance
that g translates a point of T . The length topology is induced by the map

24both open and closed
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A(G) → [0,∞)G, T 7→ (‖g‖T )g∈G. The subspace L(G) is clopen in PA(G)
with respect to either the Gromov topology or length topology. It follows
from work of Paulin [18] that the closures of {Tf} in PA(G) \ L(G) with re-
spect to the two topologies also agree and are homeomorphic (by the identity
function). Finally, with respect to either topology, L(G) is homeomorphic to

[Hom(Ab(G),R) \ {0}]/(0,∞)

with its natural topology. In particular, the the closures of {Tf} in PA(G)
with respect to the two topologies agree and are homeomorphic.

Remark 3.20. L(G) is a real projective space and, for g ∈ G, the set {T ∈
L(G) | g ∈ Ker(T )} is a subprojective space, so is closed but not generally
open.

4 Proof of the Main Proposition

To warm up, we first prove the Main Proposition under the additional as-
sumption that Γ has only trivial abelian splittings, i.e. every simplicial Γ-tree
with abelian edge stabilizers has a fixed point. This proof is then modified
to apply to the general case.

Proposition 4.1. Suppose that Γ is a generic limit group and has only trivial
abelian splittings25. Then, Γ has a factor set.

Proof. Let T ∈ T (Γ). By Proposition 3.17, either Γ/Ker(T ) is non-generic
or satisfies the hypotheses of Theorem 3.13. In any case, by Corollary 3.16,
Γ/Ker(T ) admits a non-trivial abelian splitting. In particular, Ker(T ) is
non-trivial. Choose non-trivial kT ∈ Ker(T ). By Corollary 3.18, {L(Γ)} ∪
{U(kT ) | T ∈ T (Γ) \ L(Γ)} is an open cover of T (Γ). Let {L(Γ)} ∪ {U(ki)}
be a finite subcover. By definition, {Γ → Ab(Γ)} ∪ {qi : Γ → Γ/〈〈ki〉〉} is a
factor set.

The key to the proof of the general case is Sela’s notion of a short homo-
morphism, a concept which we now define.

25By Proposition 3.17 and Corollary 3.16, limit groups have non-trivial abelian split-
tings. The purpose of this proposition is to illustrate the method in this simpler (vacuous)
setting.
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Definition 4.2. Let G be an fg group. Two elements f and f ′ in Hom(G,F)
are equivalent, denoted f ∼ f ′, if there is α ∈Mod(G) and an element c ∈ F

such that f ′ = ic ◦ f ◦α.26 Fix a set B of generators for G and by |f | denote
maxg∈B |f(a)| where, for elements of F, | · | indicates word length. We say
that f is short if, for all f ′ ∼ f , |f | ≤ |f ′|.

Here is another exercise in Gromov convergence. See [30, Claim 5.3] and
[2, Theorem 7.4].

Exercise 11. Suppose that G is generic, {fi} is a sequence in Hom(G,F),
and limTfi

= T in T (G). Then, either

• Ker(T ) is non-trivial or,

• eventually fi is not short.

The idea is that if the first bullet does not hold, then the GAD of G given
by Corollary 3.16 can be used to find elements of Mod(G) that shorten fi for
i large. Let T ′(G) be the closure in T (G) of {Tf | f is short in Hom(G,F)}.
By Corollary 3.18(1), T ′(G) is compact.

Proof of the Main Proposition. Let T ∈ T ′(Γ). By Exercise 11, Ker(T ) is
non-trivial. Choose non-trivial kT ∈ Ker(T ). By Corollary 3.18, {L(Γ)} ∪
{U(kT ) | T ∈ T ′(Γ) \ L(Γ)} is an open cover of T ′(Γ). Let {L(Γ)}∪ {U(ki)}
be a finite subcover. By definition, {Γ → Ab(Γ)} ∪ {qi : Γ → Γ/〈〈ki〉〉} is a
factor set.

JSJ-decompositions will be used to prove Theorem 1.25, so we digress.

5 Review: JSJ-theory

Some familiarity with JSJ-theory is assumed. The reader is referred to Rips-
Sela [22], Dunwoody-Sageev [5], Fujiwara-Papasoglou [6]. For any generic
group G consider the class of 1-edge splittings such that:

(JSJ 1) the edge group is abelian,

(JSJ 2) the edge group is primitive27, and

26ic is conjugation by c
27closed under taking roots
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(JSJ 3) every non-cyclic abelian subgroup A ⊂ G is elliptic.

We observe that

• Any two such splittings are hyperbolic-hyperbolic28 or elliptic-elliptic29(a
hyperbolic-elliptic pair implies that one splitting can be used to refine
the other. Since the hyperbolic edge group is necessarily cyclic by
(JSJ 3), this refinement gives a free product decomposition of G).

• A hyperbolic-hyperbolic pair has both edge groups cyclic and yields a
GAD of G with a QH-vertex group.

• An elliptic-elliptic pair has a common refinement that satisfies (JSJ 1)–
(JSJ 3) and whose set of elliptics is the intersection of the sets of elliptics
in the given splittings.

Given a GAD ∆ of G, we say that g ∈ G is ∆-elliptic if it is conjugate to
a an element v of a vertex group V of ∆ and further,

• If V is QH then v is a multiple of a boundary component.

• If V is abelian then v ∈ P (V ).

The idea is that ∆ gives rise to a family of 1-edge splittings coming from
edges of the decomposition, from simple closed curves in QH-vertex groups,
and from subgroups A′ of an abelian vertex A that contain P (A) and with
A/A′ ∼= Z. An element is ∆-elliptic iff it is elliptic with respect to all these
1-edge splittings. Conversely, any finite collection of 1-edge splittings satis-
fying (JSJ 1)–(JSJ 3) gives rise to a GAD whose set of elliptics is precisely
the intersection of the set of elliptics in the collection.

Definition 5.1. An abelian JSJ-decomposition of G is a GAD whose elliptic set
is the intersection of elliptics in the family of all 1-edge splittings satisfying
(JSJ 1)–(JSJ 3).

For example, G = F × Z does not have any splittings satisfying (JSJ 1)-
(JSJ 3) so the abelian JSJ is G itself. Of course, G does have (many) abelian
splittings (but they don’t satisfy (JSJ 3)).

28each edge group of each tree contains an element not fixing a point of the other tree
29each edge group of each tree fixes a point of the other tree
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Remark 5.2. Since abelian subgroups of limit groups are fg (Corollary 1.23),
(JSJ 3) implies that for a limit group all the splittings that we will consider
have the property that non-cyclic abelian subgroups are conjugate into a
vertex group.

To show that a group G admits an abelian JSJ-decomposition it is nec-
essary to show that there is a bound to the complexity of the GAD’s arising
from finite collections of 1-edge splittings satisfying (JSJ 1)–(JSJ 3). If G
were fp the results of [3] would suffice. Since we don’t know yet that limit
groups are fp, another technique is needed. Following Sela, we use acylindri-
cal accessibility.

Definition 5.3. A simplicial G-tree T is n-acylindrical if, for non-trivial g ∈ G,
the diameter in the simplicial metric of the sets Fix(g) is bounded by n. It
is acylindrical if it is n-acylindrical for some n.

Theorem 5.4 (Acylindrical Accessibility: Sela [29], Weidmann [34]).
Let G be a non-cyclic freely indecomposable fg group and let T be a minimal
k-acylindrical simplicial G-tree. Then, T/G has at most 1 + 2k(rank G− 1)
vertices.

The explicit bound in Theorem 5.4 is due to Richard Weidmann. For
limit groups, 1-edge splittings satisfying (JSJ 1)–(JSJ 3) are 2-acylindrical
and finitely many such splittings give rise to GAD’s that can be arranged
to be 2-acylindrical. Theorem 5.4 can then be applied to show that abelian
JSJ-decomposition exist.

Theorem 5.5 ([30]). Limit groups admit abelian JSJ-decompositions.

Definition 5.6. Let ∆ be a 1-edge splitting of a group G with abelian edge
group C. Let z be an element of the centralizer ZG(C) of C in G. The
automorphism αz of G, called the Dehn twist in z, is determined as follows.
There are two cases.

1. ∆ = A ∗C B:

αz(g) =

{

g, if g ∈ A;

zgz−1, if g ∈ B.

2. ∆ = A∗C

αz(g) =

{

g, if g ∈ A;

gz, if g is the stable letter.
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If ∆ is as in Cases (1) and (2) and if A is abelian then a generalized Dehn
twist is a Dehn twist or an automorphism of G that restricts to a unimodular
automorphism of A and that is the identity when restricted to the edge
groups incident to A and when restricted to B if B exists. Mod(∆) is the
subgroup of Mod(G) generated by these generalized Dehn twists.

Exercise 12. • Mod(G) is generated by inner automorphisms together
with generalized Dehn twists.

• If G is a limit group, then Mod(G) is generated by inner automorphisms
together with generalized Dehn twists associated to 1-edge splittings of
G satisfying (JSJ 1)–(JSJ 3). See [30, Lemma 2.1]. In fact, the only
generalized Dehn twists that are not Dehn twists can be taken to be with
respect to a splitting of the form A ∗C B where A = C ⊕ Z.

Remark 5.7. If B is a rigid vertex group of an abelian JSJ-decomposition
of a group G and if α ∈ Mod(G), then there is an element of g such that
α|B = ig|B. Indeed, B is elliptic in any 1-edge splitting of G and so the
statement is true for generators of Mod(G).

6 Limit groups are CLG’s

In this section, we show that limit groups are CLG’s and complete the proof
of Theorem 1.25.

Lemma 6.1. Limit groups are CLG’s

Proof. Let Γ be a limit group, which we may assume is generic. Let {fi} be a
sequence in Hom(Γ,F) such that fi is injective on elements of length at most
i (with respect to some finite generating set for Γ). Define f̂i to be a short
map equivalent to fi. According to Exercise 11, q : Γ→ Γ′ := Γ/Ker−−→ f̂i is a

proper epimorphism, and so by induction we may assume that Γ′ is a CLG.
Let ∆ be an abelian JSJ-decomposition of Γ. We will show that q and ∆

satisfy the conditions in Definition 1.14. The key observations are these.

• If A is a peripheral subgroup of an abelian vertex of ∆, then A is
elliptic in all 1-edge splittings of Γ. In particular, Dehn twists, hence
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all elements of Mod(Γ), when restricted to A are trivial30. Also, by
Corollary 1.23, abelian vertex groups of ∆ are CLG’s.

• Elements of Mod(Γ) when restricted to edge groups of ∆ are trivial.
Since Γ is a limit group, each edge group is a maximal abelian subgroup
in at least one of the two adjacent vertex groups. See Exercise 6.

• The q-image of a QH-vertex group Q of ∆ is non-abelian. Indeed,
suppose that Q is a QH-vertex group of ∆ and that q(Q) is abelian.
Then, eventually f̂i(Q) is abelian. QH-vertex groups of abelian JSJ-
decompositions are canonical, and so every element of Mod(Γ) pre-
serves Q up to conjugacy. Hence, eventually fi(Q) is abelian, contra-
dicting the triviality of Ker−−→ fi.

• Elements of Mod(Γ) when restricted to envelopes of rigid vertex groups
of ∆ are trivial. Since Ker−−→ fi is trivial, q is injective on these envelopes.
In particular, rigid vertex groups of ∆ are CLG’s.

Proof of Theorem 1.25. (1) =⇒ (2) =⇒ (3) were exercises. (3) =⇒ (1) is
the content of Lemma 6.1.

7 A more geometric approach

In this section, we show how to derive the Main Proposition using Rips theory
for fp groups in place of the structure theory of actions of fg groups on real
trees.

Definition 7.1. Let K be a finite 2-complex with a measured lamination
(Λ, µ). The length of Λ, denoted ‖Λ‖, is the sum Σe

∫

e
µ over the edges e of

K.

If φ : K̃ → T is a resolution, then ‖φ‖K is the length of the induced
lamination Λφ. Suppose that K is a 2-complex for G.31 Recall that TF is a

30Recall our convention that “trivial” means “agrees with the restriction of an inner
automorphism”. Alternatively, we could view elements of Mod(Γ) as inducing the trivial
outer automorphism on A.

31i.e. the fundamental group of K is identified with the group G
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Cayley graph for F with respect to a fixed basis and that from a homomor-
phism f : G→ F a resolution φ : (K̃, K̃(0))→ (TF, T

(0)
F

) can be constructed,
see [3]. The resolution φ depends on a choice of images of a set of orbit
representatives of vertices in K̃. We will always choose φ to minimize ‖φ‖K
over this set of choices. With this convention, we define ‖f‖K := ‖φ‖K.

Lemma 7.2. Let K1 and K2 be finite 2-complexes for G. There is a number
B = B(K1, K2) such that, for all f ∈ Hom(G,F),

B−1 · ‖f‖K1
≤ ‖f‖K2

≤ B · ‖f‖K1
.

Proof. Let φ1 : K̃1 → TF be a resolution such that ‖φ1‖K1
= ‖f‖K1

. Choose

an equivariant map ψ(0) : K̃
(0)
2 → K̃

(0)
1 between 0-skeleta. Then, φ1ψ

(0)

determines a resolution φ2 : K̃2 → TF. Extend ψ(0) to a cellular map ψ(1) :
K̃

(1)
2 → K̃

(1)
1 between 1-skeleta. Let B2 be the maximum over the edges e of

the simplicial length of the path ψ(1)(e) and let E2 be the number of edges
in K2. Then,

‖f‖K2
≤ ‖φ2‖K2

≤ B2N2‖φ1‖K1
= B2N2‖f‖K1

.

The other inequality is similar.

Recall that in Definition 4.2, we defined another length | · | for elements
of Hom(G,F).

Corollary 7.3. Let K be a finite 2-complex for G. Then, there is a number
B = B(K) such that for all f ∈ Hom(G,F)

B−1 · |f | ≤ ‖f‖K ≤ B · |f |.

Proof. If B is the fixed finite generating set for G and if RB is the wedge
of circles with fundamental group identified with the free group on B, then
complete RB to a 2-complex for G by adding finitely many 2-cells and apply
Lemma 7.2.

Remark 7.4. Lemma 7.2 and its corollary allow us to be somewhat cavalier
with our choices of generating sets and 2-complexes.

Exercise 13. The space of (nonempty) measured laminations on K can be
identified with the closed cone without 0 in RE

+, where E is the set of edges of
K, given by the triangle inequalities for each triangle of K. The projectivized
space PML(K) is compact.
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Exercise 14. If limi→∞ Tfi
= T and limi→∞ Λfi

= Λ then there is a resolu-
tion that sends lifts of leaves of Λ to points of T and is monotonic (Cantor
function) on edges of K̃.

Definition 7.5. An element f of Hom(G,F) is K-short if ‖f‖K ≤ ‖f
′‖K for

all f ′ ∼ f . Two sequences {mi} and {ni} in N are comparable if there is a
number C > 0 such that C−1 ·mi ≤ ni ≤ C ·mi for all i.

Corollary 7.6. Let {fi} be a sequence in Hom(G,F). Suppose that f ′
i ∼

fi ∼ f ′′
i where f ′

i is short and f ′′
i is K-short. Then, the sequences {|f ′

i |} and
{‖f ′′

i ‖K} are comparable.

Definition 7.7. If ` is a leaf of a measured lamination Λ on a finite 2-complex
K, then (conjugacy classes of) elements in the image of π1(` ⊂ K) are carried
by `. Suppose that Λi is a component of Λ. If Λi is simplicial (consists of a
parallel family of compact leaves `), then elements in the image of π1(` ⊂ K)
are carried by Λi. If Λi is minimal and if N is a standard neighborhood32 of
Λi, then elements in the image of π1(N ⊂ K) are carried by Λi.

Definition 7.8. Let K be a finite 2-complex for G. Let {fi} be a sequence
of short elements in Hom(G,F) and let φi : K̃ → TF be an fi-equivariant
resolution. We say that the sequence {φi} is short if {‖φi‖K} and {|fi|} are
comparable.

Exercise 15. Let G be freely indecomposable. In the setting of Definition 7.8,
if {φi} is short then Λ = lim Λφi

has a leaf carrying non-trivial elements of
Ker(T ).

The idea is again that, if not, the induced GAD could be used to shorten.
The next exercise, along the lines of Exercise 10, will be needed in the fol-
lowing lemma.33

Exercise 16. Let ∆ be a 1-edge GAD of a group G with a homomorphism q
to a limit group Γ. Suppose:

• the vertex groups of ∆ are non-abelian,

• the edge group of ∆ is maximal abelian in each vertex group, and

32see Theorem 3.6
33It is a consequence of Theorem 1.25, but since we are giving an alternate proof we

cannot use this.

25



• q is injective on vertex groups of ∆.

Then, G is a limit group.

Lemma 7.9. Let Γ be a limit group and let q : G → Γ be an epimorphism
such that Hom(G,F) = Hom(Γ,F). If α ∈ Mod(G) then α induces an
automorphism α′ of Γ and α′ is in Mod(Γ).

Proof. Since Γ = RF (G), automorphisms of G induce automorphisms of
Γ. Let ∆ be a 1-edge splitting of G such that α ∈ Mod(∆). It is enough
to check the lemma for α. We will check the case that ∆ = A ∗C B and
that α is a Dehn twist by an element c ∈ C and leave the other (similar)
cases as exercises. We may assume that q(A) and q(B) are non-abelian for
otherwise α′ is trivial. Our goal is to successively modify q until it satisfies
the conditions of Exercise 16.

First replace all edge and vertex groups by their q-images so that the
second condition of the exercise holds. Always rename the result G. If the
third condition does not hold, pull34 the centralizers ZA(c) and ZB(c) across
the edge. Iterate. It is not hard to show that the limiting GAD satisfies
the conditions of the exercise. So, the modified G is a limit group. Since
Hom(G,F) = Hom(Γ,F), we have that G = Γ and α = α′.

Alternate proof of the Main Proposition. Suppose that Γ is a generic limit
group, T ∈ T ′(Γ), and {fi} is a sequence of short elements of Hom(Γ,F)
such that limTfi

= T . As before, our goal is to show that Ker(T ) is non-
trivial, so suppose not. Recall that the action of Γ on T satisfies all the
conclusions of Proposition 3.17.

Let q : G → Γ be an epimorphism such that G is fp and Hom(G,F) =
Hom(Γ,F). By Lemma 7.9, elements of the sequence {fiq} are short. We
may assume that all intermediate quotients G→ G′ → Γ are freely indecom-
posable35.

Choose a 2-complex K for G and a subsequence so that Λ := lim Λfiq

exists. For each component Λ0 of Λ, perform one of the following moves to
obtain a new finite laminated 2-complex for an fp quotient of G (that we will
rename (K,Λ) and G). Let G0 denote the subgroup of G carried by Λ0.

34If A0 is a subgroup of A, then the result of pulling A0 across the edge is A ∗〈A0,C〉

〈A0, B〉, cf. moves of type IIA in [3].
35see [23]

26



1. If Λ0 is minimal and if G0 stabilizes a linear subtree of T , then enlarge
N(Λ0) to a model for the action of q(G0) on T .

2. If Λ0 is minimal and non-toral and if G0 does not stabilize a linear
subtree of T , then collapse all added annuli to their bases.

3. If Λ0 is simplicial and G0 stabilizes an arc of T , then attach 2-cells to
leaves to replace G0 by q(G0).

In each case, also modify the resolutions to obtain a short sequence on the new
complex with induced laminations converging to Λ. The modified complex
and resolutions contradict Exercise 15. Hence, Ker(T ) is non-trivial.

To finish, choose non-trivial kT ∈ Ker(T ). As before, if {L(Γ)}∪{U(kTi
)}

is a finite cover for T ′(Γ), then {Γ → Ab(Γ)} ∪ {Γ → Γ/〈〈kTi
〉〉} is a factor

set.
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