Homework 13: Review - old quals plus ϵ

I collected some old qual problems. I divided them into two parts. Part A is "Cauchy and friends" and roughly corresponds to the material in 4200. Part B is the more advanced part of 6220 . I also added Part C to cover some topics I didn't find on old quals.

You should also be ready to state the following named theorems: CauchyRiemann, Goursat, Morera, Cauchy integral formula, Liouville, Schwarz reflection, Runge, Argument principle, Open Mapping, Rouché, Schwarz lemma, Montel, Picard - little and great, Riemann Mapping theorem, SchwarzChristoffel, Mittag-Leffler, Weierstrass Product theorem, Uniformization.

Let $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the upper half plane and let $\mathbb{D}=\{z \in$ $\mathbb{C}||z|<1\}$ be the unit disk.

Part A.

1. Let f be an entire function such that $|f(z)| \leq K|z|^{n}$ where K is a positive real constant and n is a positive integer. Show that f is a polynomial of degree $\leq n$.
2. Calculate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+4} d x
$$

3. Calculate the integral

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

4. Let $a>1$ be arbitrary. Show that the equation $a-z-e^{-z}=0$ has exactly one solution in the half-plane $\{z \mid \operatorname{Re}(z)>0\}$, and moreover, this solution is real.
5. Does there exists a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ so that

$$
f\left(\frac{1}{n}\right) f\left(\frac{1}{n+1}\right)=\frac{1}{n}
$$

for $n \in\{2,3, \ldots$.$\} ?$
6. Let \mathcal{F} be a family of holomorphic functions on \mathbb{D} so that there exists $C>0$ with $|f(z)| \leq C$ for all $z \in \mathbb{D}$.
(a) If $K \subset \mathbb{D}$ is compact then \mathcal{F} is uniformly Lipshitz on K. That is, there exists $\lambda>0$ so that for any $f \in \mathcal{F}$ and $z, w \in K$ we have $|f(z)-f(w)| \leq \lambda|z-w|$.
(b) Show that \mathcal{F} is not necessarily uniformly Lipschitz on \mathbb{D}.
7. State and prove Morera's Theorem.
8. Using Rouché's theorem find the number of zeros of the polynomial $2 z^{5}-z^{3}+3 z^{2}-z+8$ in the region $\{z||z|>1\}$.
9. Describe all entire functions f which satisfy the property:

$$
\lim _{z \rightarrow \infty} \frac{1}{f(z)}=0
$$

10. Evaluate

$$
\int_{C} \frac{\sin z}{z^{6}} d z
$$

where C is the positively oriented unit circle $\{z \in \mathbb{C}||z|=1\}$.

Part B.

11. (a) Find a biholomorphic map from \mathbb{H} to \mathbb{D} that takes i to 0 .
(b) Let $f: \mathbb{H} \rightarrow \mathbb{H}$ be a holomorphic map with $f(i)=i$. Show that $\left|f^{\prime}(i)\right| \leq 1$ and that if $\left|f^{\prime}(i)\right|=1$ then f is of the form $f(z)=\frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{R}$.
12. Let f be an entire function such that for all $x \in \mathbb{R}, f(i x)$ and $f(1+i x)$ are in \mathbb{R}. Show that f is periodic with period 2 . That is, show that $f(z)=f(z+2)$ for all $z \in \mathbb{C}$.
13. Let f be a function holomorphic on \mathbb{D} and continuous on \mathbb{D}. Assume that $|f(z)|=1$ whenever $|z|=1$. Show that f can be extended to a meromorphic function on all of \mathbb{C}, with at most finitely many poles. Further, prove that f is the restriction of a rational function.
14. Suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic and zero at points $z_{1}, \cdots, z_{n} \in$ \mathbb{D} counted with multiplicity. Show that

$$
|f(z)| \leq\left|\psi_{z_{1}}(z)\right| \cdots\left|\psi_{z_{n}}(z)\right|
$$

in \mathbb{D} where $\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z}$.
15. Let Ω be a simply connected domain in \mathbb{C}. Show that if a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ has finitely many zeros, all of even order, then f has a holomorphic square root in Ω, i.e. there is a holomorphic function $g: \Omega \rightarrow \mathbb{C}$ so that $f(z)=g(z)^{2}$.
16. let $f: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic function. Show that

$$
|f(z)-f(0)| \leq|z(1-\overline{f(0)} f(z))|
$$

for all $z \in \mathbb{D}$.
17. Let $\wp(z)$ be the Weierstrass \wp-function with periods ω_{1}, ω_{2}. Show that any even elliptic function $f(z)$ with the same periods can be expressed in the form

$$
f(z)=C \prod_{k=1}^{n} \frac{\wp(z)-a_{k}}{\wp(z)-b_{k}}
$$

for some constants $C, a_{k}, b_{k} \in \mathbb{C}$, provided that 0 is neither a zero nor a pole. What is the corresponding form if $f(z)$ either vanishes at 0 or has a pole at 0 ?

Part C.

18. Compute the hyperbolic distance in the upper half-plane \mathbb{H} between $x i$ and $1+x i$, for $x>0$.
19. Let $A_{R}=\{z \in \mathbb{C}|1<|z|<R\}$ for $R>1$.
(a) Show that if A_{R} and $A_{R^{\prime}}$ are biholomorphic, then $R=R^{\prime}$.
(b) Show that every holomorphic map $\mathbb{C} \backslash\{0\} \rightarrow A_{R}$ is constant, for any $R>1$.
20. Define $\log z$ on $\mathbb{C} \backslash\{z \mid \operatorname{Re}(z)=0, \operatorname{Im}(z) \leq 0\}$ by

$$
\log r e^{i \theta}=\log r+i \theta
$$

for $\theta \in(-\pi / 2,3 \pi / 2)$ and define $z^{-2 / 3}=e^{(-2 \log z) / 3}$. Describe the image of the function

$$
f(z)=\int_{0}^{z} \xi^{-2 / 3}(\xi-1)^{-2 / 3} d \xi
$$

defined on \mathbb{H}. You don't have to give the exact coordinates, but you should find the geometric shape.

