Homework 13: Review – old quals plus ϵ

I collected some old qual problems. I divided them into two parts. Part A is "Cauchy and friends" and roughly corresponds to the material in 4200. Part B is the more advanced part of 6220. I also added Part C to cover some topics I didn't find on old quals.

You should also be ready to state the following named theorems: Cauchy-Riemann, Goursat, Morera, Cauchy integral formula, Liouville, Schwarz reflection, Runge, Argument principle, Open Mapping, Rouché, Schwarz lemma, Montel, Picard – little and great, Riemann Mapping theorem, Schwarz-Christoffel, Mittag-Leffler, Weierstrass Product theorem, Uniformization.

Let $\mathbb{H} = \{z \in \mathbb{C} \mid Im(z) > 0\}$ be the upper half plane and let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk.

Part A.

- 1. Let f be an entire function such that $|f(z)| \leq K|z|^n$ where K is a positive real constant and n is a positive integer. Show that f is a polynomial of degree $\leq n$.
- 2. Calculate the integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 4} dx$$

3. Calculate the integral

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx$$

- 4. Let a>1 be arbitrary. Show that the equation $a-z-e^{-z}=0$ has exactly one solution in the half-plane $\{z\mid Re(z)>0\}$, and moreover, this solution is real.
- 5. Does there exists a holomorphic function $f: \mathbb{D} \to \mathbb{C}$ so that

$$f\bigg(\frac{1}{n}\bigg)f\bigg(\frac{1}{n+1}\bigg) = \frac{1}{n}$$

for $n \in \{2, 3,\}$?

- 6. Let \mathcal{F} be a family of holomorphic functions on \mathbb{D} so that there exists C > 0 with $|f(z)| \leq C$ for all $z \in \mathbb{D}$.
 - (a) If $K \subset \mathbb{D}$ is compact then \mathcal{F} is uniformly Lipshitz on K. That is, there exists $\lambda > 0$ so that for any $f \in \mathcal{F}$ and $z, w \in K$ we have $|f(z) f(w)| \leq \lambda |z w|$.
 - (b) Show that \mathcal{F} is not necessarily uniformly Lipschitz on \mathbb{D} .
- 7. State and prove Morera's Theorem.
- 8. Using Rouché's theorem find the number of zeros of the polynomial $2z^5 z^3 + 3z^2 z + 8$ in the region $\{z \mid |z| > 1\}$.
- 9. Describe all entire functions f which satisfy the property:

$$\lim_{z \to \infty} \frac{1}{f(z)} = 0$$

10. Evaluate

$$\int_C \frac{\sin z}{z^6} dz$$

where C is the positively oriented unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$.

Part B.

- 11. (a) Find a biholomorphic map from \mathbb{H} to \mathbb{D} that takes i to 0.
 - (b) Let $f: \mathbb{H} \to \mathbb{H}$ be a holomorphic map with f(i) = i. Show that $|f'(i)| \leq 1$ and that if |f'(i)| = 1 then f is of the form $f(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$.
- 12. Let f be an entire function such that for all $x \in \mathbb{R}$, f(ix) and f(1+ix) are in \mathbb{R} . Show that f is periodic with period 2. That is, show that f(z) = f(z+2) for all $z \in \mathbb{C}$.
- 13. Let f be a function holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Assume that |f(z)| = 1 whenever |z| = 1. Show that f can be extended to a meromorphic function on all of \mathbb{C} , with at most finitely many poles. Further, prove that f is the restriction of a rational function.
- 14. Suppose that $f: \mathbb{D} \to \mathbb{D}$ is holomorphic and zero at points $z_1, \dots, z_n \in \mathbb{D}$ counted with multiplicity. Show that

$$|f(z)| \le |\psi_{z_1}(z)| \cdots |\psi_{z_n}(z)|$$

in \mathbb{D} where $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$.

- 15. Let Ω be a simply connected domain in \mathbb{C} . Show that if a holomorphic function $f:\Omega\to\mathbb{C}$ has finitely many zeros, all of even order, then f has a holomorphic square root in Ω , i.e. there is a holomorphic function $g:\Omega\to\mathbb{C}$ so that $f(z)=g(z)^2$.
- 16. let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Show that

$$|f(z) - f(0)| \le |z(1 - \overline{f(0)}f(z))|$$

for all $z \in \mathbb{D}$.

17. Let $\wp(z)$ be the Weierstrass \wp -function with periods ω_1, ω_2 . Show that any even elliptic function f(z) with the same periods can be expressed in the form

$$f(z) = C \prod_{k=1}^{n} \frac{\wp(z) - a_k}{\wp(z) - b_k}$$

for some constants $C, a_k, b_k \in \mathbb{C}$, provided that 0 is neither a zero nor a pole. What is the corresponding form if f(z) either vanishes at 0 or has a pole at 0?

Part C.

- 18. Compute the hyperbolic distance in the upper half-plane \mathbb{H} between xi and 1 + xi, for x > 0.
- 19. Let $A_R = \{ z \in \mathbb{C} \mid 1 < |z| < R \}$ for R > 1.
 - (a) Show that if A_R and $A_{R'}$ are biholomorphic, then R = R'.
 - (b) Show that every holomorphic map $\mathbb{C} \setminus \{0\} \to A_R$ is constant, for any R > 1.
- 20. Define $\log z$ on $\mathbb{C} \setminus \{z \mid Re(z) = 0, Im(z) \leq 0\}$ by

$$\log r e^{i\theta} = \log r + i\theta$$

for $\theta \in (-\pi/2, 3\pi/2)$ and define $z^{-2/3} = e^{(-2\log z)/3}.$ Describe the image of the function

$$f(z) = \int_0^z \xi^{-2/3} (\xi - 1)^{-2/3} d\xi$$

defined on \mathbb{H} . You don't have to give the exact coordinates, but you should find the geometric shape.