
Homework 12: Picard, Mittag-Leffler, Weierstrass, CA meets CA

Picard theorems.

1. Let f, g : C → C be entire.

(i) If f2 + g2 = 1 show that there is an entire function h such that
f(z) = cos(h(z)) and g(z) = sin(h(z)) for every z ∈ C. Hint: If
an entire function doesn’t take value 0 then it is the exponential
of another entire function. Also, (f + ig)(f − ig) = 1. This
actually works for simply-connected domains, not just C.

(ii) If fn + gn = 1 for some n ≥ 3 show that f and g are constant.
Hint: Factor into n terms and use Picard.

2. Let fn : D → C∖{0, 1} be holomorphic. Show that after a subsequence
either:

• fn converge uniformly on compact sets to a function f : D →
C∖ {0, 1}, or

• fn converge uniformly on compact sets to a constant 0, 1 or ∞.

Hint: As usual, view C ∖ {0, 1} = Ĉ ∖ {0, 1,∞} with its hyperbolic
metric (the double of an ideal hyperbolic triangle). Then pass to a
subsequence so that either all fn(0) are contained in a fixed compact
set, or so that fn(0) converge to one of three cusps.

3. Use the previous problem to prove the following theorem of Schottky.
For every M > 0 there is C > 0 so that if f : D → C ∖ {0, 1} is
holomorphic and |f(0)| ≤ M then |f(z)| ≤ C for every z with |z| ≤ 1

2 .
Of course, 1

2 could be replaced by any number < 1 but C depends on
this number.

4. Use Schottky’s theorem to give another proof of Great Picard using
the following outline. Let f : D∖ {0} → C∖ {0, 1} have a singularity
at 0.

(i) Show that there is a sequence zn → 0 such that |f(zn)| is uni-
formly bounded by some M or else 0 is a pole. Assume the
former.
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(ii) When zn is sufficiently close to 0 show that |f(z)| ≤ C on the
circle |z| = |zn| where C is the constant from Schottky’s theorem.
Hint: Consider w 7→ f(zne

2πiw) for |w| ≤ 1
2 .

(iii) Use the maximum principle to show that f is bounded by C on
every annulus between two such circles.

(iv) Conclude that 0 is a removable singularity.

Mittag-Leffler and Weierstrass.

5. Let Ω ⊆ C be a domain and an a sequence of distinct points in Ω that
doesn’t accumulate anywhere in Ω. If bn is any sequence of complex
numbers, show that there is a holomorphic function f : Ω → C so that
f(an) = bn for all n. Moreover, show that for each an we can specify
the initial portion of the power series expansion around an. Hint: First
use Weierstrass, then Mittag-Leffler. It’s important to do it in that
order. The desired function will be the product.

Complex Analysis meets Commutative Algebra: algebraic prop-
erties of the ring H(Ω).

Let Ω ⊆ C be a domain and let H(Ω) denote the ring of holomorphic
functions Ω → C. In this section you can use Mittag-Leffler, Weierstrass
and the previous problem. The purpose is to establish some properties of
this ring that you encounter in commutative algebra.

6. Let f1, f2 ∈ H(Ω) be two functions without common zeros. Show that
there are functions g1, g2 ∈ H(Ω) such that f1g1 + f2g2 = 1. Hint:
Choose g1 so that 1− f1g1 vanishes at every point where f2 does with
at least as large multiplicity.

7. More generally, show that for any f1, f2 ∈ H(Ω) there are g1, g2 ∈
H(Ω) so that h = f1g1 + f2g2 vanishes only at points where both
f1, f2 vanish and the multiplicity of the zero is the smaller of the two
multiplicities for f1, f2.

8. Show that every finitely generated ideal in H(Ω) is principal. Hint:
For two generators this should follow from the previous problem. In
general induct.

9. Show that every finitely generated maximal ideal I is of the form

{f ∈ H(Ω) | f(z0) = 0}
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for some z0 ∈ Ω. This is a kind of Nullstellensatz in this setting.

10. Construct an (infinitely generated) ideal in H(Ω) that is not principal.
Hint: For a sequence of points consider functions that vanish on all
but finitely many.

11. Show that there is a maximal ideal that is not finitely generated. Hint:
Zorn’s lemma says that every proper ideal is contained in a maximal
ideal.
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