Homework 12: Picard, Mittag-Leffler, Weierstrass, CA meets CA

Picard theorems.

1. Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be entire.
(i) If $f^{2}+g^{2}=1$ show that there is an entire function h such that $f(z)=\cos (h(z))$ and $g(z)=\sin (h(z))$ for every $z \in \mathbb{C}$. Hint: If an entire function doesn't take value 0 then it is the exponential of another entire function. Also, $(f+i g)(f-i g)=1$. This actually works for simply-connected domains, not just \mathbb{C}.
(ii) If $f^{n}+g^{n}=1$ for some $n \geq 3$ show that f and g are constant. Hint: Factor into n terms and use Picard.
2. Let $f_{n}: \mathbb{D} \rightarrow \mathbb{C} \backslash\{0,1\}$ be holomorphic. Show that after a subsequence either:

- f_{n} converge uniformly on compact sets to a function $f: \mathbb{D} \rightarrow$ $\mathbb{C} \backslash\{0,1\}$, or
- f_{n} converge uniformly on compact sets to a constant 0,1 or ∞.

Hint: As usual, view $\mathbb{C} \backslash\{0,1\}=\widehat{\mathbb{C}} \backslash\{0,1, \infty\}$ with its hyperbolic metric (the double of an ideal hyperbolic triangle). Then pass to a subsequence so that either all $f_{n}(0)$ are contained in a fixed compact set, or so that $f_{n}(0)$ converge to one of three cusps.
3. Use the previous problem to prove the following theorem of Schottky. For every $M>0$ there is $C>0$ so that if $f: \mathbb{D} \rightarrow \mathbb{C} \backslash\{0,1\}$ is holomorphic and $|f(0)| \leq M$ then $|f(z)| \leq C$ for every z with $|z| \leq \frac{1}{2}$. Of course, $\frac{1}{2}$ could be replaced by any number <1 but C depends on this number.
4. Use Schottky's theorem to give another proof of Great Picard using the following outline. Let $f: \mathbb{D} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0,1\}$ have a singularity at 0 .
(i) Show that there is a sequence $z_{n} \rightarrow 0$ such that $\left|f\left(z_{n}\right)\right|$ is uniformly bounded by some M or else 0 is a pole. Assume the former.
(ii) When z_{n} is sufficiently close to 0 show that $|f(z)| \leq C$ on the circle $|z|=\left|z_{n}\right|$ where C is the constant from Schottky's theorem. Hint: Consider $w \mapsto f\left(z_{n} e^{2 \pi i w}\right)$ for $|w| \leq \frac{1}{2}$.
(iii) Use the maximum principle to show that f is bounded by C on every annulus between two such circles.
(iv) Conclude that 0 is a removable singularity.

Mittag-Leffler and Weierstrass.

5. Let $\Omega \subseteq \mathbb{C}$ be a domain and a_{n} a sequence of distinct points in Ω that doesn't accumulate anywhere in Ω. If b_{n} is any sequence of complex numbers, show that there is a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ so that $f\left(a_{n}\right)=b_{n}$ for all n. Moreover, show that for each a_{n} we can specify the initial portion of the power series expansion around a_{n}. Hint: First use Weierstrass, then Mittag-Leffler. It's important to do it in that order. The desired function will be the product.

Complex Analysis meets Commutative Algebra: algebraic properties of the ring $H(\Omega)$.

Let $\Omega \subseteq \mathbb{C}$ be a domain and let $H(\Omega)$ denote the ring of holomorphic functions $\Omega \rightarrow \mathbb{C}$. In this section you can use Mittag-Leffler, Weierstrass and the previous problem. The purpose is to establish some properties of this ring that you encounter in commutative algebra.
6. Let $f_{1}, f_{2} \in H(\Omega)$ be two functions without common zeros. Show that there are functions $g_{1}, g_{2} \in H(\Omega)$ such that $f_{1} g_{1}+f_{2} g_{2}=1$. Hint: Choose g_{1} so that $1-f_{1} g_{1}$ vanishes at every point where f_{2} does with at least as large multiplicity.
7. More generally, show that for any $f_{1}, f_{2} \in H(\Omega)$ there are $g_{1}, g_{2} \in$ $H(\Omega)$ so that $h=f_{1} g_{1}+f_{2} g_{2}$ vanishes only at points where both f_{1}, f_{2} vanish and the multiplicity of the zero is the smaller of the two multiplicities for f_{1}, f_{2}.
8. Show that every finitely generated ideal in $H(\Omega)$ is principal. Hint: For two generators this should follow from the previous problem. In general induct.
9. Show that every finitely generated maximal ideal I is of the form

$$
\left\{f \in H(\Omega) \mid f\left(z_{0}\right)=0\right\}
$$

for some $z_{0} \in \Omega$. This is a kind of Nullstellensatz in this setting.
10. Construct an (infinitely generated) ideal in $H(\Omega)$ that is not principal. Hint: For a sequence of points consider functions that vanish on all but finitely many.
11. Show that there is a maximal ideal that is not finitely generated. Hint: Zorn's lemma says that every proper ideal is contained in a maximal ideal.

