Homework 6: Review - Problems from past quals

I didn't try to sort these in any way, some are very similar to each other, and there are no hints (with one exception).

1. Let f be a holomorphic function on a disk centered at 0 and radius >1. Prove that if $|z|<1$ then

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\xi)}{\sin (\xi-z)} d \xi
$$

where C is the unit circle oriented counterclockwise.
2. Prove that if f is an entire function satisfying

$$
|f(z)| \leq A+B \log |z|
$$

for some $A, B>0$ and all z with $|z| \geq 1$, then f is a constant function.
3. Determine if there exists an entire function f such that

$$
f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}
$$

for all $n=1,2, \cdots$.
4. Let

$$
f(z)=\frac{e^{\frac{1}{z-1}}}{e^{z}-1}
$$

Determine all isolated singularities of f and their type. Also compute the residue at each pole.
5. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta}{1-2 a \cos \theta+a^{2}} d \theta
$$

where a is a complex number with $|a|<1$.
6. Let f be a holomorphic function with an isolated singularity at $z=a$. Assume that $g=\frac{1}{f}$ also has an isolated singularity at $z=a$, and that a is not a removable singularity for either f or g. Determine what type of singularity is a for f and g. Do you know an example of such a function f ?
7. Let f be holomorphic in $\mathbb{C} \backslash\{0,2\}$. Assume:
(i) 0 and 2 are poles of order 1 ,
(ii) f is bounded on $|z| \geq 3$,
(iii) the integral of f over the circle $C(0,1)$ centered at 0 and radius 1 is $2 \pi i$, and
(iv) the integral of f over the circle $C(0,3)$ centered at 0 and radius 3 is 0 .

Determine f.
8. Let f be an entire function such that $f^{\prime}=f$. Prove that $f(z)=C e^{z}$ for some constant C. Hint: Power series
9. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin a x}{x\left(x^{2}+b^{2}\right)} d x
$$

where $a, b \in \mathbb{R}$ and $b \neq 0$.
10. Characterize all entire functions f such that

$$
\lim _{z \rightarrow \infty} \frac{1}{f(z)}=0
$$

11. Let $\Omega \subseteq \mathbb{C}$ be open and f holomorphic in Ω. Let $b \in \Omega$ and assume $f^{\prime}(b) \neq 0$. Show that

$$
\frac{2 \pi i}{f^{\prime}(b)}=\int_{C} \frac{1}{f(z)-f(b)} d z
$$

for sufficiently small positively oriented circles C centered at b.
12. Determine the poles and their orders of the function

$$
\frac{1}{e^{z}-1}-\frac{1}{z}
$$

13. Suppose $a>1$. Compute

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\sin \theta}
$$

14. Evaluate

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x
$$

15. Suppose f is holomorphic in $0<r<|z|<R$ and suppose that for some ρ with $r<\rho<R$

$$
\int_{|z|=\rho} f(z) z^{n} d z=0
$$

for all negative integers n. Show that f extends to a holomorphic function on $|z|>r$.
16. Let f be an injective entire function and put $g(z)=f(1 / z)$. Show that g does not have an essential singularity at $z=0$. Further show that $f(z)=a z+b$ for some constants a, b.
17. Let f be holomorphic on $D \backslash\{0\}$ where D is the unit disk. Assume that f^{\prime} is bounded on $D \backslash\{0\}$. Prove that f extends to a holomorphic function on D.
18. Let f be an entire function such that $|f(z)| \neq 1$ for all $z \in \mathbb{C}$. Show that f is a constant function.
19. Let f be an entire function.
(a) If there is a polynomial g such that $|f(z)| \leq|g(z)|$ for every z, show that f is also a polynomial.
(b) Can we draw the same conclusion if g is assumed to be a rational function instead of a polynomial?
20. Show that any continuous function on $|z| \leq 1$ which is holomorphic on $|z|<1$ can be uniformly approximated by polynomials.
21. Suppose f is holomorphic on $|z|<1$ and satisfies $|f(1 / n)| \leq 1 / n^{n}$ for all $n=2,3, \cdots$. Determine f.
22. If f is entire and nowhere 0 , show that there is an entire function g such that $f=g^{2}$.
23. If f is entire and not a polynomial, show that for every $\epsilon>0$ there is z with $\left|f(z)-z^{2}\right|<\epsilon$.

