Homework 5: Singularities, Residue Calculus

Singularities

1. If f is a holomorphic function defined in $\{|z|>R\}$ (we think of this set as a neighborhood of ∞) we say that ∞ is a removable or essential singularity or a pole provided that 0 is the respective singularity for the function $g(z)=f\left(\frac{1}{z}\right)$. Show that
(i) A nonconstant polynomial has a pole at infinity.
(ii) If f is an entire function which is not a polynomial, then f has an essential singularity at ∞.
Note that our standard essential singularities such as $e^{\frac{1}{z}}$ or $\sin \frac{1}{z}$ come from the construction in (ii), and we also get some new examples, e.g. $e^{\frac{1}{z}+\frac{1}{z^{2}}}$ etc.

Residue Calculus.

2. Let P be a polynomial of degree ≥ 2.
(a) Show that for any circle C of big enough radius so that it encloses all roots we have

$$
\int_{C} \frac{d z}{P(z)}=0
$$

(b) Assuming all roots z_{1}, \cdots, z_{n} of P are distinct prove (using the Residue theorem) that

$$
\sum_{j=1}^{n} \frac{1}{P^{\prime}\left(z_{j}\right)}=0
$$

You may want to spend a few minutes thinking about how to prove (ii) without the Residue theorem.
3. Compute

$$
\frac{i}{4} \int_{|z|=2023} \tan (\pi z) d z
$$

4. Compute

$$
\frac{1}{2 \pi i} \int_{|z|=1} \sin \left(\frac{1}{z}\right) d z
$$

5. Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 r \cos \theta+r^{2}}=\frac{2 \pi}{\left|1-r^{2}\right|}
$$

when $r \in \mathbb{R} \backslash\{-1,1\}$.
6. Prove the Wallis formula

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}(2 \cos \theta)^{2 m} d \theta=\binom{2 m}{m}
$$

for $m=1,2, \cdots$.
7. Prove that

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\frac{\pi}{n}}{\sin \left(\frac{\pi}{n}\right)}
$$

for $n=2,3, \cdots$.
Hint: Use the contour consisting of $[0, R],\left[0, R e^{2 \pi i / n}\right]$ and the short arc of $|z|=R$ connecting the endpoints.
8. Prove that

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin x}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{2 e}
$$

Hint: As usual, $f(z)=\frac{z^{3} e^{i z}}{\left(z^{2}+1\right)^{2}}$.
9. Prove that

$$
\int_{0}^{\infty} \frac{x \sin x}{x^{4}+1} d x=\frac{\pi}{2} e^{-1 / \sqrt{2}} \sin \left(\frac{1}{\sqrt{2}}\right)
$$

10. Prove that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\cosh x} d x=\frac{\pi}{\cosh \left(\frac{\pi}{2}\right)}
$$

Hint: For the contour take the rectangle of height π and base $[-R, R]$.
11. Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

This can be done in many ways, including Fourier series, but here you should use Residue Calculus.
12. Prove that

$$
1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\cdots=\frac{\pi^{2}}{12}
$$

Hint: $\pi \csc \pi z=\frac{\pi}{\sin \pi z}$ has residue $(-1)^{n}$ at $z=n$.

