Homework 4: Runge, zeros, Laurent

Runge

1. In class we constructed a sequence of polynomials that pointwise converges to a discontinuous function. Find a variant of this construction to show that there is a sequence of polynomials that pointwise converges to the zero function on \mathbb{C}, but not uniformly in any neighborhood of 0 .

Zeros.

2. Show that the only holomorphic function f on the unit disk such that $f\left(\frac{1}{n}\right)=0$ for $n=2,3, \cdots$ is the zero function.
3. Show that there are holomorphic functions f other than the zero function on the punctured disk $\left\{z||z|<1, z \neq 0\}\right.$ such that $f\left(\frac{1}{n}\right)=0$ for $n=2,3, \cdots$.
4. Show that there are no holomorphic functions f on the unit disk such that $f\left(\frac{1}{n}\right)=e^{-n}$ for $n=2,3, \cdots$.
5. Show that the only holomorphic function f on the unit disk such that $\left|f\left(\frac{1}{n}\right)\right| \leq e^{-n}$ for $n=2,3, \cdots$ is the zero function. Hint: If not, write $f(z)=z^{m} g(z)$ with $g(0) \neq 0$.
6. Suppose f is holomorphic in $|z|<2$ and for every $n=2,3, \cdots$

$$
\int_{|z|=1} \frac{f(z)}{n z-1} d z=0
$$

Show that f is the zero function.
7. What can you say about f if the displayed equation is replaced with

$$
\int_{|z|=1} \frac{f(z)}{(n z-1)^{2}} d z=0
$$

8. Is there a holomorphic function f on the unit disk such that

$$
f\left(\frac{1}{2 n}\right)=f\left(\frac{1}{2 n+1}\right)=\frac{1}{n}
$$

for $n=2,3, \cdots$?
9. Suppose f is an entire function and for every $z_{0} \in \mathbb{C}$ the power series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

around z_{0} has at least one coefficient a_{n} equal to zero. Show that f is a polynomial.

Laurent series.

10. Let $a, b \in \mathbb{C}$ with $0<|a|<|b|$ and let

$$
f(z)=\frac{1}{(z-a)(z-b)}
$$

Find the Laurent series expansions of f in
(a) $|z|<|a|$,
(b) $|a|<|z|<|b|$,
(c) $|z|>|b|$.
11. Let α, β be two disjoint simple closed curves in \mathbb{C} such that the disk A bounded by α is contained in the disk B bounded by β. Let Ω be the domain (annulus) $\operatorname{int}(B \backslash A)$ and let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Show that f can be written uniquely as

$$
f=g+h
$$

where g is holomorphic in $\operatorname{int}(B), h$ is holomorphic in $\mathbb{C} \backslash \bar{A}$ and $g(z) \rightarrow 0$ as $z \rightarrow \infty$. This generalizes the case when α, β are concentric round circles, when g corresponds to the part of the Laurent series with nonnegative powers of z.

