Homework 3: Cauchy, Morera, Integrals

Cauchy inequalities, Liouville

1. Suppose f is an entire function (holomorphic on all of \mathbb{C}) that satisfies $|f(z)| \leq A|z|^{n}+B$ for some n, A, B. Show that f is a polynomial.
2. Suppose that f and g are entire functions such that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$. Show that there is a complex number λ such that $f(z)=\lambda g(z)$ for all $z \in \mathbb{C}$. Warning: If you consider f / g you should argue that it is well-defined at the zeros of g.
3. Suppose f_{n} is a sequence of holomorphic functions on a domain Ω that converges pointwise to a function f. Assuming all f_{n} are uniformly bounded on each compact subset of Ω show that convergence is uniform on compact sets. Hint: Cauchy for $f_{n}-f_{m}$ plus a named theorem from real analysis. Comment: False without assuming uniform boundedness, as we shall see later.
4. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence ≥ 1. Suppose that $\left|f^{\prime}(z)\right| \leq 1$ for all z with $|z|<1$. Prove that $\left|a_{n}\right| \leq \frac{1}{n}$ for all n. By example, show that these inequalities are sharp.

Morera's theorem.

5. Prove the following version of Morera's theorem. Suppose $f: \Omega \rightarrow \mathbb{C}$ is continuous and Ω is the open rectange $\{z \in \mathbb{C} \mid \operatorname{Re}(z) \in(-1,1), \operatorname{Im}(z) \in$ $(-1,1)\}$. Suppose that $\int_{\gamma} f(z) d z=0$ for every rectangle γ in Ω with sides parallel to the real and imaginary axes. Show that f is holomorphic. Note: The assumption that Ω is a rectangle is just for convenience; the statement is true for any open set.

Integrals. In the first three problems use the same curve we used in class, consisting of segments $[-R,-\epsilon],[\epsilon, R]$ and the two semicircles centered at 0 of radius ϵ and R.
6. (Dirichlet integral) $\int_{0}^{\infty} \frac{\sin x}{x} d x$. Hint: $e^{i z} / z$.
7. $\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$. Hint: $\frac{1-e^{2 i z}}{z^{2}}$. Actually, this integral is equivalent to the one we did in class after a simple substitution.
8. Prove that $\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{3} d x=\frac{3 \pi}{4}$. Hint: $\frac{3 e^{i z}-e^{3 i z}}{z^{3}}$.
9. Compute the Fresnel integrals

$$
\int_{-\infty}^{\infty} \cos \left(t^{2}\right) d t \quad \text { and } \quad \int_{-\infty}^{\infty} \sin \left(t^{2}\right) d t
$$

You can use the Gaussian integral calculation

$$
\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}
$$

from real analysis. Hint: Consider $f(z)=e^{-z^{2}}$ and integrate on the sector that consists of segments $[0, R],\left[0, R e^{i \pi / 4}\right]$ and the circular arc connecting R and $R e^{i \pi / 4}$.

