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Irreducible Complex Representations

We start with:

Schur’s Lemma. If V1 and V2 are irreducible complex representations of G, then:

(a) HomG(V1, V2) = 0 or else

(b) HomG(V1, V2) = C · f is spanned by a (G-linear) isomorphism f : V1 → V2.

Proof. Suppose f ∈ HomG(V1, V2). Because ker(f) is invariant, it follows that
ker(f) = 0 or else ker(f) = V1 i.e. f is either injective or the zero map. Similarly,
the invariant image f(V1) ⊂ V2 shows that either f(V1) = 0 or f(V1) = V2, so f is
either the zero map or f is surjective. Thus f either 0 or an isomorphism.

Now suppose g ∈ HomG(V1, V2) is another G-linear isomorphism, and consider
the automorphism σ = g−1 ◦ f : V1 → V1. Now consider the one-parameter family:

fλ := σ − λ · idV1
∈ HomG(V1, V1) for λ ∈ C

Then by the same reasoning as in the first paragraph, each of these G-linear maps is
either an automorphism or else the zero map. But if λ is an eigenvalue of σ (which
always exists, since C is algebraically closed), then fλ is not an isomorphism, so it
must be zero. Thus:

g ◦ f−1 = σ = λ · idV for some λ

and then g = λ · f , as desired. □

Corollary. Suppose V is a complex representation of G and:

V = U1 ⊕ · · · ⊕ Ur

is a direct sum of irreducible representations U1, ..., Ur (possibly with repetitions).
Then HomG(V,U) ̸= 0 for an irreducible U if and only if U ∼= Ui for some i.

Proof. If U is not isomorphic to any of the Ui and f ∈ HomG(V,U), then each
of the restricted maps: f |Ui : Ui → U is the zero map by Schur’s lemma, and so:

f(v) = f(u1 + · · ·+ ur) = f(u1) + · · ·+ f(ur) = 0

for all v = u1 + · · ·+ ur ∈ V . In other words, f itself is the zero map.

On the other hand, if U = Ui for some i, then the projection map

f(v) = f(u1 + · · ·+ ui + · · ·+ ur) = ui

is well-defined and G-invariant, and evidently not the zero map. □

Given a G-representation U , let nU = U ⊕ U ⊕ · · · ⊕ U (n times).

Corollary. Given a finite complex representation V of a finite group G, let:

V = n1U1 ⊕ · · · ⊕ nlUl

collecting isomorphic irreducibles. If U ∼= Ui, then dimk(HomG(V,U)) = ni.

Proof. This uses the second part of Schur’s lemma. Let f : Ui → U be an
isomorphism (uniquely determined up to the choice of scalar). Then a G-linear
map h : V → U is completely determined by scalars (λ1, ...., λni

) via:

h|niUi
(u1 + · · ·+ uni

) =

ni∑
j=1

λjf(uj) and h|njUj
= 0 for j ̸= i □
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Corollary. If G is finite (so direct sum decompositions exist), then:

V ∼=
⊕
U

dimk(HomG(V,U))U

summed over all irreducible representations U . That is, the decomposition into
irreducibles, with multiplicities, is determined by the morphism spaces.

We now apply this to a particular representation.

The Regular Representation. Let G be a finite group and define:

C[G] = ⟨eg | g ∈ G⟩

to be the complex vector space C|G| with one basis vector for each element g ∈ G.
This vector space comes equipped with the “regular” representation of G given by:

ρ(h)(eg) = ehg

i.e. ρ(h) permutes the basis vectors by left translation by the element h ∈ G.

Example. We’ve seen the regular representation of Cn in the previous section.

We can think of C[G] as the vector space of functions f : G → C, in which eg are
the “delta functions” eg(h) = 0 if h ̸= g and eg(g) = 1 and an arbitrary function
f : G → C is then a sum:

f =
∑
g∈G

f(g)eg ∈ C[G]

From this point of view, the regular representation is the action of the group G on
the vector space of functions taking:

h · f = f ◦ left translation by h−1

which is exactly the content of: h · eg = ehg. (Note the inverse!)

Thinking of elements of C[G] as functions may or may not help when thinking
about the regular representation of finite groups, but it gives us a road map for what
to do with groups (e.g. orthogonal or unitary groups) that are not finite. The idea is
to limit the space of all functions f : G → C (which is too big) to more manageable
G-invariant subspaces. These will not be finite-dimensional, since in fact orthogonal
and unitary groups have infinitely many irreducible complex representations, but
this idea helps to find the countably many irreducible complex representations.

Theorem. The regular representation C[G] of G satisfies:

HomG(C[G], U) ∼= U for all irreducible U , so that C[G] =
∑
U

dim(U) · U

summed over all irreducible complex representations U .

Proof. Let u ∈ U , and define a G-linear map hu : C[G] → U by setting:

hu(eg) = gu for each basis vector eg

where gu ∈ U is the result of acting u by the group element g. In other words:

hu(
∑
g∈G

λgeg) =
∑
g∈G

λggu for each vector v =
∑
g∈G

λgeg ∈ C[G]

Then for all g′ ∈ G and all basis vectors eg of C[G], we have:

hu(g
′eg) = hu(eg′g) = (g′g)u = g′(gu) = g′hu(g)
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so hu is G-linear. Moreover, hu(eid) = id · u = u for id ∈ G, so if we define:

ev : HomG(C[G], U) → U by ev(h) = h(eid) =: uh

then h = huh
and h is an isomorphism, with inverse u 7→ hu. □

The Theorem has two powerful consequences:

Corollary.

(1) Every irreducible representation of G is a summand of C[G]. Even more:

(2) The dimensions of the irreducible representations U of G satisfy:

dim(C[G]) = |G| =
∑
U

dim(U)2

Examples. (a) The only irreducible representations of an abelian group G are
characters, so: |G| = 12 + 12 + · · ·+ 12 and indeed G has |G| complex characters.

(b) We have found three irreducible representations of S3 = D6:

• The trivial representation (dimension one)

• The sign character (also dimension one)

• The symmetries of the equilateral triangle (dimension two)

Since 6 = 12 + 12 + 22, there are no others!

(c) We have found two irreducible representations of D8:

• The trivial representation (dimension one)

• The symmetries of the square (dimension two)

Since 8 = 12+22+3 and 3 is only a sum of squares in one way (3 = 12+12+12),
there are three other characters. Let’s find them. The subgroup

H = {1, x2} ⊂ D8 = {1, x, x2, x3, y, xy, x2y, x3y}

is normal since x(x2)x−1 = x2 and y(x2)y−1 = x−2yy−1 = x2, and the quotient is
the group of left cosets:

D8/H = {H,xH.yH, xyH}

Since x2 ∈ H, y2 = 1 and (xy)2 = 1, each of the cosets {xH, yH, xyH} has order
two in D8/H, and so D8/H is the Klein group C2 × C2. This is an abelian group,
so it has four characters (see (a)). Each of them determines a character of D8 via:

D8 → D8/H → C∗

These are the four characters (including the trivial character) of D8.

(d) In addition to the irreducible three-dimensional representation of A4 as the
symmetries of the tetrahedron, we can use the normal Klein subgroup:

K4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}◁A4

to find three characters of A4 via the map A3 → A4/K4 = C3, and 12 = 9+1+1+1,
so we know these are all of them.
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The notion of a generalized character of a representation will help us to be more
systematic about finding the irreducible representations of a finite group. This is
the trace of a complex representation ρ:

χρ : G → C given by χρ(g) = tr(ρ(g))

i.e. χρ(g) is the trace of the matrix associated to ρ(g) (which does not depend upon
the choice of basis). If χ : G → C∗ is itself a (one-dimensional) character, then the
trace is χ itself.

Note that the trace applied to the identity element of G is always:

χρ(id) = dim(V )

the dimension of the representation.

Example. (a) The character of the two-dim’l irreducible representation ρ of S3 is:

χρ(id) = tr

[
1 0
0 1

]
= 2

χρ(1 2) = tr

[
−1 1
0 1

]
= 0

χρ(2 3) = tr

[
1 0
1 −1

]
= 0

χρ(1 3) = tr

[
−1 1
0 1

]
= 0

χρ(1 2 3) = tr

[
0 −1
1 −1

]
= −1

χρ(1 3 2) = tr

[
0 −1
1 −1

]
= −1

and we see in particular that a generalized character can take the value 0. In fact:

(b) The character of the regular representation C[G] is:

χρ(id) = |G| and χρ(g) = 0 for all g ̸= id

To see the this, note that:

ρ(g)(eh) = egh ̸= eh if g ̸= id

and so the matrix for the action of g is a permutation matrix with no fixed basis
vectors, i.e. there are only zeroes on the diagonal, so the trace is zero.

Definition. A function α : G → C is a class function if α(h) = α(ghg−1) for all
g, h ∈ G, i.e. if α is constant on the conjugacy classes of G.

Examples. (a) Let C1, ..., Cr ⊂ G be the conjugacy classes of G. The functions:

δi(g) =

{
1 if g ∈ Ci

0 otherwise

are step functions that form a basis for the vector space of class functions.
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(b) Each character χρ : G → C of a representation ρ is a class function since

tr(ρ(g)ρ(h)ρ(g)−1) = tr(ρ(h)) for all g and h

Theorem. Define an inner product on the space Z[G] of class functions by:

(α, β) =
1

|G|
∑
g∈G

α(g)β(g)

Then the following orthogonality relations hold among the characters:

(i) The characters of irreducible representations of G are orthonormal and

(ii) The characters of irreps are an orthonormal basis of Z[G].

Example. Before we prove this, let’s see the Theorem in practice for G = S3.

• The conjugacy classes of S3 are:

C1 = {id},C2 = {(1 2), (2 3), (1 3)},C3 = {(1 2 3), (1 3 2)}
• The irreducible representations of S3 are:

χtr (trivial), χsgn(sign), and the two-dimensional irreducible representation ρ

We arrange the characters of these representations in a character table.

id (1 2) (1 2 3)
1 3 2

χtr 1 1 1
χsgn 1 -1 1
ρ 2 0 -1

• The first row is a list of representatives from each conjugacy class Ci

• The second row is a list of the sizes |Ci| of each conjugacy class.

• The first column is a list of the irreducible representations

• The rest of the table computes the characters of the representations.

You may now check the orthogonality relations. For example:

(χρ, χρ) =
1

6

(
22 + 2(−1)2

)
= 1 and (χtr, χsgn) =

1

6
(1 + 3 · (−1) + 2 · 1) = 0

The key idea in the proof is to notice that Hom(V,W ) (not G-linear!) is itself a
G-representation whenever V and W are G-representations. The action of G is:

(gf)(v) = g(f(g−1v))

so that if f(v) = w, then we have (gf)(gv) = gw. This is a G-representation since
((hg)f)((hg)v) = (hg)w = h(gw) = h((gf)(gv)) = (h(gf))((hg)v) and in particular
f is G-linear if and only if (gf) = f for all g ∈ G, i.e.

• HomG(V,W ) is the largest subspace of Hom(V,W ) on which G acts trivially

The character of Hom(V,W ) is the product:

χHom(V,W)(g) = χV (g
−1) · χW (g)

as one can check choosing bases of eigenvalues for g−1 : V → V and g : W → W .
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In addition, notice that the character of the representation V ⊕W satisfies:

χV⊕W (g) = χV (g) + χW (g)

so that, for example, χC[G](g) =
∑

U dim(U) · χU (g).

Proof. This relies on two averaging maps. Given a representation (V, ρ), define

p : V → V by setting p(v) =
1

|G|
∑
g∈G

gv. Then

(a) hp(v) = p(v), so the image of p consists of G-invariant vectors of V

(b) p(v) = v for all G-invariant vectors in V .

Thus p : V → VG ⊂ V is the projection onto the subspace of G-invariant vectors,
and it follows that tr(p) = dim(VG). On the other hand,

tr(p) =
1

|G|
∑
g∈G

tr(ρ(g)) =
1

|G|
∑
g∈G

χV (g)

is the average of the values of the character of V . When we apply this to the space
Hom(V,W ) of maps between representations,

dim(HomG(V,W )) =
1

|G|
∑
g∈G

χV (g
−1)χW (g)

If V and W are irreducible representations, then from Schur’s Lemma we get:

1

|G|
∑
g∈G

χV (g
−1)χW (g) =

{
1 if V = W
0 if V ̸∼= W

which is very nearly (i) of the Theorem. In fact, it is (i) since the characters of

representations of a finite group satisfy χV (g
−1) = χV (g). To see this, recall that

each matrix A = ρ(g) has finite order, hence all its eigenvalues are roots of unity,
and roots of unity satisfy ζ−1 = ζ. But then the trace of A is a sum

∑
ζi of roots

of unity, and the trace of A−1 is
∑

ζ−1
i =

∑
ζi = tr(A).

We prove (ii) with a weighted average function. For a class function α ∈ Z[G],

pα : V → V is defined by pα(v) =
1

|G|
∑
g∈G

α(g)g · v.

Then we claim that pα ∈ homG(V, V ). Indeed,

pα(h·v) =
1

|G|
∑
g∈G

α(g)(gh)·v =
h

|G|
∑
g∈G

α(g)(h−1gh)·v =
h

|G|
∑
g∈G

α(h−1gh)(h−1gh)·v

since α is a class function, and then this is just a reordering of the sum, so:

h

|G|
∑
g∈G

α(h−1gh)(h−1gh) · v = h · pα(v)

If V is an irreducible representation, then pα = λ · idV by Schur’s Lemma, and:

λ · dim(V ) = tr(pα) =
1

|G|
∑
g

α(g)χV (g) = (α, χV )

so that in particular, if (α, χV ) = 0, then λ = 0 and pα = 0.
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If the characters of irreducible representations fail to be a basis for Z[G], then
there is a nonzero class function α ∈ Z[G] such that α is orthogonal to all characters.
That is (α, χV ) = 0 for all irreducible representations. But then by linearity,
(α, χV ) = 0 for all characters, and pα = 0 for all representations of G. If we apply
this to the regular representation C[G], we get:

pα(eid) =
1

|G|
∑
g

α(g)eg = 0

from which we conclude that α(g) = 0 for all values of g. This is a contradiction. □

After doing all this work, let’s have some fun.

Character table for A4. The conjugacy classes of A4 are:

C1 = {id}, C2 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
C3 = {(1 2 3), (1 3 4), (1 4 2), (2 4 3)}, C4 = {(1 3 2), (1 4 3), (1 2 4), (2 4 3)}

and we’ve seen that the irreducible representations of A4 are χtr, χω, χω2 , ρ where
ω = e2πi/3 and χω(1 2 3) = ω and χω2(1 2 3) = ω2 and ρ(g) is a symmetry of the
tetrahedron in three-space. Then the character table of A4 is:

id (1 2)(3 4) (1 2 3) (1 3 2)
1 3 4 4

χtr 1 1 1 1
χω 1 1 ω ω2

χω2 1 1 ω2 ω
ρ 3 -1 0 0

where the traces of ρ(g) are computed as follows:

(i) ρ((1 2)(3 4)) is a rotation by π about an axis, with eigenvalues 1,−1,−1.

(ii) ρ(1 2 3) is a rotation by either 2π/3 or 4π/3 about an axis, with eigenvalues
1, ω, ω2 and trace zero. and similarly for ρ(1 3 2).

When we have an incomplete list of irreducible representations, there are various
methods for filling in the table. If we are missing one representation, then its
character (but not the representation itself) can be deduced from the orthogonality
relations. Other methods for finding new representations include:

Multiplying by a One-dimesional Character. If (V, ρ) is a representation of
G and χ is a one-dimensional character of G, then:

ρ′(g) = χ(g) · ρ(g) : V → V

is another representation. If V is irreducible, then χ · ρ is irreducible, and:

χ′
ρ = χ · χρ

because multiplying a matrix by a scalar multiplies the trace by the same scalar.
Then by the orthogonality relations, we know that:

(V, ρ′) ∼= (V, ρ) if and only if χρ′ = χρ

Thus, for example, the square of the sign character is always the trivial character,
and if ρ : S3 → Aut(C2) is the irreducible two-dimensional representation, then
(reading from the character table)

χ(ρ) = (2, 0,−1) and χsgn = (1,−1, 1), so χρ′ = (2, 0,−1)
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and multiplying by the sign does not produce a new representation.

Character Table for S4. The five conjugacy classes of S4 have representatives:

id, (1 2), (1 2 3), (1 2 3 4), (1 2)(3 4)

and via the quotient group S4/K4 = S3 and the symmetries of the cube ρcub, we
count the three irreducible representations of S3 plus ρcub among the irreducible
representations of S4. This gives the following partial character table:

id (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
1 6 8 6 3

χtr 1 1 1 1 1
χsgn 1 -1 1 -1 1
ρtri 2 0 -1 0 2
ρcub 3 -1 0 1 -1
ρ 3

The fact that the missing character ρ is three-dimensional follows from:

24 = 12 + 12 + 22 + 32 + dim(ρ)2

and from the orthogonality relations, we obtain the full last line of the table:

(3, 1, 0,−1,−1)

and this is indeed the character of the missing representation χsgn · ρcub.
Another interesting way of obtaining new representations is by:

Automorphisms of G. If σ : G → G is a symmetry (in the category of groups),
and ρ : G → Aut(V ) is a representation, then the composition:

ρ ◦ σ : G → G → Aut(V )

is a representation. We’ve seen in §5 that conjugating by g ∈ G is a symmetry:

σg(h) = ghg−1

but these “inner” automorphisms of G do not change conjugacy classes, and thus
do not change characters of representations. However, groups do on occasion have
“outer” automorphisms that do change characters of representations.

Character Table for A5. The five conjugacy classes of A5 have representatives:

id, (1 2)(3 4), (1 2 3), (1 2 3 4 5), (1 3 5 2 4)

and the outer automorphism σ obtained by conjugating A5 by the odd permutation
(2 3 5 4) exchanges the last two conjugacy classes (while fixing the others). Consider
the representation ρdod of A5 given by the action of A5 on the dodecahedron. Then:

ρdod((1 2)(3 4)) is a rotation by π, with trace 1 + (−1) + (−1) = −1.

ρdod(1 2 3) is a rotation by 2π/3 or 4π/3, with trace 1 + ω + ω2 = 0.

ρdod(1 2 3 4 5) is a rotation by 2mπ/5, since it is an element of order 5. If it is by

2π/5 or 8π/5, then the trace is 1+τ+τ4 = ϕ = (1+
√
5)/2, the golden mean, where

τ = e2πi/5. If it is by 4π/5 or 6π/5, then the trace is 1+τ2+τ3 = (1−
√
5)/2 = 1−ϕ.

Whichever rotation is taken by ρdod(1 2 3 4 5), the square (1 3 5 2 4) is taken to a
rotation with the opposite trace. So the character of ρdod is either:

(3,−1, 0, ϕ, 1− ϕ) or (3,−1, 0, 1− ϕ, ϕ)
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and indeed, composing with the symmetry σ takes one to the other.

Thus, we have three out of five rows of the character table for A5:

id (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 3 5 2 4)
1 15 20 12 12

χtr 1 1 1 1 1
ρdod 3 -1 0 ϕ 1− ϕ

ρdod ◦ σ 3 -1 0 1− ϕ ϕ
ρ1
ρ2

and once again, the dimension count will tell us the other two dimensions:

60 = 12 + 32 + 32 + dim(ρ1)
2 + dim(ρ2)

2

from which it follows that dim(ρ1) = 4 and dim(ρ2) = 5 since:

41 = 16 + 25 is the unique way to express 41 as a sum of squares

So we seek four and five dimensional irreducible representations of the group A5.
For the first, consider the permutation representation:

ρperm(σ)(ei) = eσ(i) for V = ⟨e1, e2, ..., e5⟩
The trace of ρperm(σ) is the number of elements fixed by σ, so χρperm

= (5, 1, 2, 0, 0).
Is this the missing five-dimensional irreducible representation? No!

(χρperm
, χρperm

) =
1

60

(
52 + 15(12) + 20(22)

)
= 2

But we knew this wasn’t irreducible anyway, since:

e1 + e2 + e3 + e4 is an invariant vector for the permutation action

from which it follows that the representation (V, ρperm) satisfies

V = U ⊕W where U is the one-dimensional trivial representation

This gives us W with χW = χV − χU = (4, 0, 1,−1,−1) and this is irreducible.
With the orthogonality relations, we can finish off the table:

id (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 3 5 2 4)
1 15 20 12 12

χtr 1 1 1 1 1
ρdod 3 -1 0 ϕ 1− ϕ

ρdod ◦ σ 3 -1 0 1− ϕ ϕ
ρst = ρperm/χtr 4 0 1 -1 -1

µ 5 1 -1 0 0

with the character of the missing representation µ.

Remark. The permutation representations of Sn and An always split off a trivial
summand. The remaining representation is the standard representation ρst.

One way to find the missing representation µ is to consider the representation:

hom(Vdod, Vdod◦σ)

which has character: χdod · χdod◦σ = (9, 1, 0,−1,−1) and (χµ, χµ) = 2 so χµ has
dimension 9 and is a sum of two irreducibles. Thus hom(Vdod, Vdod◦σ) = Vst ⊕ Vµ.
This method of finding new representations is made precise with tensor products.


