Abstract Algebra. Math 6320. Bertram/Utah 2022-23.
Groups

We start this semester with groups.
Definition. A group (G,-) is a set G with a multiplication operation:
-1 G x G — G that is
(i) Associative: g1(g2 - g3) = (91 - g2)gs for all g1,92,93 € G.
(ii) Equipped with a two-sided multiplicative identity e € G, i.e. for all g € G:

e-g =g (left identity) and g - e = g (right identity)
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(iii) Pairs each g € G with a two-sided inverse ¢4, i.e. g7t -g=e=g-g~
Examples. Abelian groups, which are also commutative (with + as the operation)

The group S,, of permutations of the set [n] = {1,....,n}. More generally,

we will write Perm(S) for the automorphism group of a set S.

The group GL(n, k) of linear automorphisms of k™. More generally, we will

write GLg (V) for the group of linear transformations of a vector space V over k.
These last two examples are instances of the:
MetaExample. G =Aut¢(X) for an object X of a category C.
Let’s dispose of some uniqueness properties first:
Uniqueness of the Identity. If ¢’ is any (right) identity, then in particular,
e¢’ = e in addition to the equality ee’ = ¢

since ¢ is a left identity. So e = ¢’ and there is no other right identity than the
two-sided identity e. Similarly, there is no other left identity.

Uniqueness of the Inverse. Suppose that h is a (right) inverse to g. Then:
g '(gh) = g~ ! in addition to the equality (¢~ *g)h = h
so by the associative property and the fact that g~ is a left inverse of g, we have
g~ ! = h and there is no other right inverse. Similarly, there is no other left inverse.
Corollary. Given a group G, there is a well-defined inverse map:
i:G—G;i(g) =g ' satisfyingioi = 1g
Definition. A set mapping f : G — G’ of groups is a homomorphism if:
fle) =¢" and f(g192) = f(91)f(g2)

for all g1, g2 € G. This defines a category Gr of groups (G, -) since the composition:

(f o f)g1-92) = f'(f(g1) - fg2)) = (f" o [)(g1) - (f' o [)(g2)
of group homomorphisms is a group homomorphisms.

Proposition 1. A bijective group homomorphism f : G — G’ is an isomorphism.

Proof. Given a bijective homomorphism f : G — G’, we note that f~1(e/) = ¢
and given g; = f(g1), 95 = f(g2), then g - g5 = f(g1) f(g2) = f(9192), and so

F e g5) = aq1ge = FH(dh) M gh). O
1



2

Examples. (a) The determinant det : GL(n, k) — (k*,-) = GL(1, k)
(b) The inverse i : G — G is not a homomorphism since:
ilg-h)=(g-h)~=h""-g7" =i(h)-i(g)
i.e. the inverse mapping reverses the product.
(c) Left multiplication by an element g # e is not a homomorphism, since:
9(9192) # (991)(gg2) (for most g in most groups)
However, left multiplication by g, denoted by [,, defines a homomorphism
l:G — Perm(G); g+,

from G to the group of permutations of G, since I, = 1¢ and lg;, = l401},. Moreover,
since l4(e) = g recovers the left translator, the [ homomorphism is injective.

(d) Similarly, right multiplication by the inverse of g € G is a homomorphism:
r: G — Perm(G); g 1y

since rgp)-1(a) = a- (gh)™' = (ah™)g™' =141 o rp-1(a).

(e) Conjugation by g € G is given by:

c: G — Autg,(G) C Perm(G); cy(h) = (Igory—1)(h) = ghg™!
Each ¢4 is a group automorphism of G since c. = 1¢, and:
cg(hrha) = ghihag™" = (gh1g™") - (ghag™!) = cg(h1) - ¢g(ha)

Definition. A subset H C G is a subgroup if:

(i) e € H, (ii) h € H implies h~! € H, and (iii) h1,he € H imply hy - hy € H

In other words, (H,-) is a group sitting inside G (with the same multiplication).

Example. The image f(G) C G’ of a homomorphism f : G — G’ is a subgroup.
Also, if H' C G’ is a subgroup, then the preimage f~!(H’) C G is a subgroup.

This, together with Example (c) above give:
Cayley’s Theorem. Every group G is isomorphic to a subgroup of Perm(G).

In fact, it is a subgroup in potentially two distinct ways, since both left and right
multiplication (by the inverse) are injections of G into Perm(G). Note, however,
that conjugation is not (usually) an injection of G into Autg,(G).

Definition. Given a subgroup H C G, the left cosets of H are:
gH ={gh | h € H}
and the right cosets are defined analogously.
Proposition 2. The left cosets are equivalence classes for the equivalence relation:
g1 ~ g2 if and only if g1h = go for some (unique) h € H
In particular, if H is finite, then each equivalence class has the same number:
|gH| = |H| of elements
and if G is finite, then we have:

Lagrange’s Theorem: |G| = |H|-|G/H| where |G/H]| is the number of left cosets.
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Definition. The order of g € G is the smallest d > 1 so that ¢g¢ = e, or else, if
there is no such d, we say that ¢ has infinite order.

Proposition 3. If |G| = n, then the order of each g € G divides n.

Proof. Consider the n + 1 elements e, g, g%, ....,g" € G. Since |G| = n, at least
two of them must coincide. Let d > 1 be the minimal “gap” so that g* = ¢®*+¢
for some a. Then e = ¢ (multiplying by ¢g=%), and so H = {e,g,4?,...,g% '} is a
cyclic subgroup of G consisting of d distinct elements. Thus d = |H| divides n. O

Remark. As a consequence of the Proposition, g = e for all g € G if |G| = n.

Corollary (Euler). The units in the ring Z/nZ, consisting of the elements that
are relatively prime to n, form a group (Z/nZ)*, whose order is ¢(n). Then:

a®™ =1 (mod n) if ged(a,n) =1
by the Proposition. In particular, we have Fermat’s Little Theorem:
a?~' =1 (mod p)
when p is prime not dividing a.

Proposition 4. The kernel K C G of a homomorphism f : G — G’, is a subgroup
with the additional property:

cg(K)=Kforallge G
This follows directly from the definitions. For example,
Flgkg™") = f()f(k)f(g™") = f(9)e' fa™) = F(9)f(g™!) = flag™ ") = fle) = ¢
so gkg~! € K whenever k € K showing that cq(K) C K.
Definition. A subgroup N C G with the additional property:
cg(N)=Nforallge G
is called a normal subgroup of G.

Remark. All subgroups of an abelian group are normal, but we will see that there
are plenty of subgroups of a general group G that are not normal.

Example. Let H C GL(2,k) be the subgroup of linear transformations that fix
the x-axis. Such matrices are all of the form:

x %
0 =*
but if we conjugate these by the reflection matrix:
o 1]
L 1 0 -
we get the matrices that fix the y-axis, which are all of the form:
v 0]
x %

Thus H is not normal.
Definition. The center Z(G) C G of a group G is the set:
Z(G)={h € G | cy(h) = ghg™' = h for all g € G}

i.e. Z(G) consists of the elements of G that commute with all elements of G.
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Remarks. (i) The center of a group always contains the identity element e.
(ii) Every subgroup H C Z(G) is a normal, abelian subgroup of G.
Example. The center of GL(n, k) consists of the (nonzero) scalar multiples of e = I,,.

First Isomorphism Theorem. Each normal subgroup N C G is the kernel of a
surjective group homomorphism to the quotient group of (left) cosets:

q:G— G/N={gN|geG}

and conversely, if K C G is the kernel of a group homomorphism f : G — G, then
f factors through ¢ followed by an isomorphism with the image: f: G/K = f(G).

Proof. The product of cosets:

(91H)(g2H) = (9192)H

is not automatically well-defined for a general subgroup of G, since multiplication
is not commutative. However, because N is a normal subgroup of G, we have:

gg_lNgg = N and so Ngo = go N
i.e. the left cosets and right cosets are the same. But then:
(91N)(92N) = (91 N)(Ng2) = 91N g2 = (9192) N

is well-defined, and the rest of the proof is the same as we’ve seen in the context of
commutative rings and ideals. O

For the rest of this section, we introduce ourselves to:
The Permutation Groups 5,
Definition. A d-cycle is a permutation f : [n] — [n] with the property that:
£(@), 2(0), £(@), s f4(a) = a
are distinct, for some a € [n], and all other elements b € [n] satisfy f(b) = b.

The notation for the cycleis: C = (a f(a) f?(a) --- f¢1(a)) which is ambiguous
only in the choice of the initial element of the cycle.

Example. The two-cycles (transpositions) (a b) and (b a) are the same, as are
(abe), (beca)and (cabd)
Remarks.(i) The identity e € S,, is the only one-cycle.
(ii) Disjoint cycles commute with each other, but:
(ab)(bec)=(abe)#(acb)=(bc)(ab)
when a # b # ¢. Thus, for example, S, is not abelian when n > 3.
Cycle Notation. Every permutation f € S, is a product of disjoint cycles.
Proof. Start with a; = a € [n] and consider the list of elements.
0, £(@), £(@), s £ (@)

There must be a repetition in the list (since this consists of n + 1 elements of [n]).
Let f°(a) = fT4(a) with the smallest (positive) gap value d. Then:

a= 7@ = £ £ a) = £(a)

and each of a, f(a), -+, f47!(a) are distinct. So this determines a cycle C1.
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Given cycles (1, ..., C; with initial elements a1, ..., a; associated to f, choose a;1
distinct from the list of elements in the cycles, and consider the cycle:

Cit1 = (@is1, f(@ig1), oo, f5H 7 aig1))
constructed as above. Then C;;1 is disjoint from each of the cycles C1,...,C;.
Eventually this process uses up all elements of [n] and produces:

Cy-Cy---Chp
which accounts for every value f(a) for a € [n]. This represents the permutation.

Uniqueness. The disjoint cycles commute with each other and can start with any
element in their list. Thus, the expression: f = Cj ---C,, is uniquely determined
by f, if we make the convention that:

(a) Each cycle C; commences with the smallest element a; in the list, and
(b) The cycles are ordered so that a; < az < -+ < am,
Moreover, since one-cycles are redundant, they are left out of the notation.
Lists of Elements. S; = {e, (1 2)}, S3 ={e, (1 2),(1 3),(23),(123),(132)}
S = {e, (xx), (% % %), (¢ xk), () () }
i.e. every element of Sy is either a single cycle or a product of disjoint two-cycles.

These are easily counted:

(i) {(*)} is comprised of (3) = 6 elements.

(ii) {(* = %)} is comprised of (g) x 2 = 8 elements.

(iii) {(* * xx)} is comprised of (j) x 3! = 6 elements.

(iv) {(*x)(**)} is comprised of the 3 elements (1 2)(3 4), (1 3)(24) and (1 4)(2 3)
which, including the identity, accounts for the 1+ 6+ 8+ 6 + 3 = 4! elements of Sy.
Lists of Subgroups.

The only (proper) subgroup of Ss is {e}.

The subgroups of S5 are {e}, {e, (1 2)}, {e, (1 3)}, {e,(2 3)}, {e,(1 2 3),(1 3 2)}.
Notice that all of these are cyclic (of order dividing 6).

The subgroups of Sy are of the following types:
e The cyclic subgroups {e, f, f2, ..., f4~1} with f¢ =e.
Typical examples are the subgroups:
{e,(12)},{e,(123),(132)},{e,(1234),(13)(24),(1432)},{e,(12)(34)}
e The Klein group (isomorphic to Z/2Z x 7 /27Z):
Ky :={e,(12)(34),(13)(24),(14)(23)}
e The four subgroups (isomorphic to Ss) each fixing one element of [4]:
H;={f:[4—=14]]| f@) =i} fori=1,2,3,4
e The three dihedral subgroups (symmetries of a square) with 8 elements each.

e The group A4 of rotations of a regular tethahedron (with 12 elements):

{e, (xxx), () () }
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Observation. S, is the group of rotational symmetries of a cube, permuting the
four long diagonals (joining pairs of opposite vertices). This group also permutes the
three short diagonals (joining midpoints of opposite faces), resulting in a surjective
group homomorphism:

54 — 53 —1
with kernel equal to the Klein group K4, which is therefore a normal subgroup.

There is another way to see that the Klein group is normal:
Conjugacy Classes. Let G be a group. Then:
hi ~ hg if and only if hy = c4(h1) = ghig™! for some g € G

defines an equivalence relation on G. The equivalence classes C1(h) for this relation
are the conjugacy classes of G.

Thus a subgroup N C G is normal if and only if it is a union of conjugacy classes.

Proposition 5. The conjugacy classes of .S, are in bijection with the partitions
n=dy +ds+ -+ di (in weakly decreasing order) di > dy > -+ > di

corresponding to the permutations of the form Cj - - - Cy with |C;| = d;.
Remark. This ordering of cycles may not conform to the “unique” form.

Proof. When C = (a1 as a3 -+ aq) is conjugated by f € S, the result is:

foCof™t=(f(ar) flaz) --- f(aa))
since
foCof~Hf(a) = foClai) = f(ai)

i.e. it is another cycle of the same length with entries specified by the permutation.
The proposition now follows. (I

Examples. The conjugacy classes of Sy are:
Cl(e) = {e} and CI(1 2) = {(1 2)}
In fact, the conjugacy classes of any abelian group are the singleton sets.
There are three conjugacy classes of S3, corresponding to the partitions:
3 =3 with {(*%%)} =CI(123) ={(123),(132)}
3=241 with {(x+)} = CI(1 2) = {(1 2)(3), (1 3)(2),(2 3)(1)}
(and recall that we’ve agreed to suppress the singletons from the notation), and
3=1+4+1+1 with Cl(e) = {e}
Comparing with the list of subgroups, we see that:
{e,(123),(132)}= Clle)U{(xx*x%)}
is the only (nontrivial) normal subgroup of Ss.
Moving on to Sy, we see that the conjugacy classes are:
{Geosoon) 1 { G ) 1 {Go) 1 {Gox) () 3, {e}
corresponding, in order, to the partitions 4,3 +1,24+1+1,2+2,1+1+ 1+ 1.

Thus we get another verification that K4 is a normal subgroup since:

Ky = {e} U{(xx)(xx)}



Similarly, the alternating group A4 is normal since:
Ay ={e} U{(0) (o) U { (5 %)}
and as a bonus, we see that K, is a normal subgroup of Ay4.
Proposition 6. There is a “sign” group homomorphism:
sgn: S, = ({£1},")
with the property that sgn(a b) = —1 for all transpositions (two-cycles) (a,b).
Corollary. The sign of a d-cycle is (—1)?~! since

(a1 az---aq) = (a1 az)(az a3) - (ag—1 aq).

Proof. We need a definition of the sign. Given f : [n] = [n], let:
fG
sen(f) =[] — 1) = 16)
1<i<j<n '7
Then:

(i) Each factor is unchanged if ¢ and j are switched.
(ii) Applying f permutes the two-element subsets of [n].

Thus by (i), the product may be unambiguously taken over the set of two-element
subsets of [n] (instead of pairs i < j), and by (ii) we have:

[Hli-i= 1] 1re-fa=1]] 1£G)

{i.g} {r@,r(} {i.g}
so [sgn(f)| = 1.
(iii) The sgn function is a group homomorphism. Given f1, f2: [n] = [n],
fo(f1(5) — fo(f1(2) fo(f — f(f1(d) f1() — £1(2)
N = LG =

{i,5}

_Hf2f1 f2(f1 Hf1 - 1(7)
{i.3} {w}

_ ( 1(5)) = f2(f fi(y )
B H f1(G) = f1(9) H J—i
2(4)

{f1(3), fl(J)} {m}

fz fi(d
I s
{i,4} {i.3}
again using (i) and (ii).

(iv) Applying 7 = (a b) (with @ < b) has the following effect on pairs (i < j).
(a) Pairs (i < j) with ¢ = a and j € [a + 1, 0] satisfy (7(i) > 7(4))
(b) Pairs (¢ < j) with i € [a,b— 1] and j = b satisfy (7(¢) > 7(j)).
(¢) All other pairs satisfy (7(7) < 7(5)).
Thus, counting the sign switches in (a) and (b), we get:
(b—a)+ (b—a)

but the pair (¢, 7) = (a,b) is counted twice, so there are an odd number overall. O
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Definition. The alternating group A, is the kernel of the sign homomorphism:
sgn : S, — {£1}
and therefore it is a normal subgroup of S, with two cosets, and
|Sn| = 2|A,|
by Lagrange’s Theorem.

Looking back over the examples, we see that:

sgn(x*) = —1,
sgn(x x %) = 1,
sgn(* * k) = —1,

sgn () (k%) = 1
so that the normal cyclic subgroup of S3 is As, and A, is indeed aptly named.
One More Example. The alternating group As consists of:
{e, (x %), (%) (%) and (* * * * )}

We will see that this group with 60 elements, unlike Ky C A4, has no non-trivial
normal subgroups.



