
Transformational Geometry of the Plane (Master Plan)

Day 1. Some Coordinate Geometry.

• Cartesian (rectangular) coordinates on the plane.
• What is a line segment?
• What is a (right) triangle?
• State and prove the Pythagorean Theorem.
• Find the distance between two points.
• What is a line?
• What is the slope of a line?
• When are two lines parallel? Perpendicular?
• Recall the “different” equations for a line in the plane.
• Find the intersection point of two lines from their equations.
• What are the coordinates of the midpoint of a line segment?
• What is a median of a triangle?
• Show that the medians of a triangle meet in a point (find it!).
• What is an altitude of a triangle?
• Show that the altitudes of a triangle meet in a point (find it!).

Day 2. Vectors.

• What is a vector (and how does it differ from a point)?
• What is the vector difference between two points?
• What is the length of the vector A? (Call it |A|)
• What does multiplying a vector by a real number do to it?
• What is the unit vector in the direction of the Vector A?
• Why does every unit vector have the form:

u = (cos(θ), sin(θ))

for some angle θ?
• How do we add a vector to a point?
• What is the sum of two vectors?
• How is a vector “like” the slope of a line?
• Describe the line through P (point) in the direction A (vector).
• Intersect two lines described in this way.
• Find an equation for a line described in this way.
• The dot (·) symmetric and det (∧) products of vectors.
• What are A · A and A ∧ A?
• What do A ·B = 0 and A ∧B = 0 mean geometrically?
• Find a rule for the signs of A ·B and A ∧B.
• Compute the following for A = (a1, a2) and B = (b1, b2)

(A ·B)2 + (A ∧B)2

and factor the result.
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Day 3. Angles.

• Why do the angles of a triangle always sum to 180 degrees?
• How is the angle θ from Vector A to Vector B measured?
• Given Vectors A and B, then there is one Vector C such that:

(a) C is a (real) multiple of A. (b) C · (B − C) = 0.
This is the projection of B on A. Draw pictures.

• Find a formula for C, given A = (a1, a2) and B = (b1, b2).
• Verify the formulas |C| = |B cos(θ)| and |B − C| = |B sin(θ)|

where θ is the angle from vector A to vector B.
• Use the two previous formulas to verify:

A ·B = |A||B| cos(θ) and A ∧B = |A||B| sin(θ)

(including the sign!)
• Conclude that |A ∧B| is twice the area of the triangle AB.
• Verify the law of sines.
• Show that the angle bisectors of a triangle meet in a point.

(E.g. The law of sines leads to a nice proof)
• Verify the law of cosines from the formula above.

Day 4. Matrices.

• Add 2 x 2 matrices. Is this associative? Commutative?
• Multiply. Is this associative? Commutative? Distributive?
• What are the additive and multiplicative identity matrices?
• Perform the following four multiplications:[
a 0
0 b

]
·
[
c 0
0 d

]
,

[
cos(s) − sin(s)
sin(s) cos(s)

]
·
[

cos(t) − sin(t)
sin(t) cos(t)

]
[

1 b
0 1

]
·
[

1 d
0 1

]
,

[
cos(s) sin(s)
sin(s) − cos(s)

]
·
[

cos(t) sin(t)
sin(t) − cos(t)

]
(Use angle addition and subtraction formulas to simplify.)
• What is the determinant of a 2 x 2 matrix?
• What is the inverse of a 2 x 2 matrix (if it is invertible)?
• Find the inverses of the following matrices (assume a, b 6= 0):[
a 0
0 b

]
,

[
1 b
0 1

]
,

[
cos(s) − sin(s)
sin(s) cos(s)

]
,

[
cos(s) sin(s)
sin(s) − cos(s)

]
• Convert the following pair of equations into a matrix equation:

a1x+ b1y = c1

a2x+ b2y = c2

and use the inverse matrix to solve for the point of intersection.
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Day 5. Linear Transformations.

• Think of A and B as vectors written vertically, and consider

F (x, y) = xA+ yB =

[
a1x+ b1y

a2x+ b2y

]
=

[
a1 b2
a2 b2

]
·
[
x
y

]
as a map from the plane to itself, and find:

F (0, 0), F (1, 0) and F (0, 1)

Such maps are called linear transformations of the plane.
The vectors are written vertically for convenience, as we will see.
From this point of view, the matrix equation from yesterday is:

F (x, y) = (c1, c2) (written horizontally)

In other words, solving this equation is finding F−1(c1, c2).

• A map from the plane to the plane is linear if:

F (rP ) = rF (P ) for all real numbers r and points P , and

F (P +Q) = F (P ) + F (Q) for all points P and Q

Show that a linear transformation is a linear map.
• Suppose F is a linear map, and F (1, 0) = A and F (0, 1) = B.

Then conclude that F is the map:

F (x, y) = xA+ yB

That is, linear maps are the same as linear transformations!
• If F is a linear map, show that:

(i) F (0, 0) = (0, 0).
(ii) F (−P ) = −F (P ) for all points P .
(iii) F (Q− P ) = F (Q)− F (P ) for all points Q and P .

Conclude from this that a linear map takes vectors to vectors!
• Show that rotations through the origin and reflections across

lines through the origin are linear maps but that other rotations
and reflections are not linear maps.
• What does the following linear transformation do to the plane?

F (x, y) = x

[
0

1

]
+ y

[
1

0

]
• Find vectors A and B so that F (x, y) = xA+ yB for each of:

(a)-(c) Reflection about the x-axis, y-axis and the origin.
(d) Dilation by a factor a in all directions.
(e) Stretch in the x-direction by a and the y-direction by b.
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• For each angle a, describe the transformations:

F (x, y) = x

[
cos(a)

sin(a)

]
+ y

[
− sin(a)

cos(a)

]
F (x, y) = x

[
cos(2a)

sin(2a)

]
+ y

[
sin(2a)

− cos(2a)

]
• We want next to compose a pair of linear transformations. If

F (x, y) = x

[
a1
a2

]
+ y

[
b1
b2

]
=

[
a1x+ b1y

a2x+ b2y

]
and

G(x, y) = x

[
c1
c2

]
+ y

[
d1
d2

]
=

[
c1x+ d1y

c2x+ d2y

]
then what is F (G(x, y))?

• Compare what you got with the columns of the matrix product:[
a1 b1
a2 b2

]
·
[
c1 d1
c2 d2

]
• Deduce the angle addition formulas for sin and cos from the fact

that the composition of rotation by the angle a and rotation by
the angle b is rotation by the angle a+ b.
• Let:

rota = rotation by the angle a (counterclockwise)
refa = reflection across the line θ = a (in polar coordinates)
dilr = dilation (stretch) by the factor r (in all directions)
strs,t = stretch by s in the x direction and t in the y direction

Find the matrices for each of these linear maps.
• A final basic map is the skew transformation skb with matrix:[

1 b
0 1

]
Describe what this transformation does to vectors in the plane.
• Fill in the following table:

F G F ◦G
rota refb
refb rota
refa refb
refb refa
rotπ

4
str 1

2
,2

str 1
2
,2 rotπ

4

In the first four cases, F ◦G is a basic linear map. In the last
two cases find A and B so that F (G(x, y)) = xA+ yB.
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Day 6. Area Factors for Linear Maps.

• Choose interesting vectors A and B and draw the image of the
unit square under the linear map F (x, y) = xA+ yB.
• Do this for the column vectors of each of the five basic linear

maps with your choice of angles and stretch and skew factors,
and also for F ◦G for the last two lines of the table above.
• If the unit square is translated by a vector A, show that its

image is translated by F (A). If the unit square is dilated by r,
show that the image dilates by r, too.
• Show that the area of the image of the unit square is |A ∧B|.
• Conclude that the area of the image of any region is the area

of the original region times |A ∧ B|. This is the “area factor”
of the linear map F (x, y) = xA+ yB.
• Explain geometrically why the area factor of F ◦G is the product

of the area factor of F with the area factor of G.
• Show (with algebra) that:

det(M) · det(N) = det(M ·N)

verifying the geometric explanation you gave above.
• Show that any linear map is a composition of three basic maps:

F (x, y) = rota ◦ strs,t ◦ skb(x, y)

for appropriates choice of a, s, t, b with s ≥ 0. The idea is to
take the image of the unit square, and return it to a unit square
by rotating, stretching and skewing it. This is subtle!
• What is the area factor for the linear map:

F (x, y) = rota ◦ strs,t ◦ skb(x, y)

in terms of a, s, t, b? When is the determinant of the matrix
associated with F negative? How is refa put in this form?
• The complex numbers may be viewed as linear transformations.

If we think of a+bi as the vector (a, b), then what is the matrix
for the linear map given by:

F (x, y) = (a+ bi) · (x+ yi) ?

• Express this matrix as a dilation composed with a rotation.
What is its area factor? Note that if we multiply two of these,
the dilation factors multiply and the rotation angles add.
• Draw a picture with some detail in the first quadrant and then

draw its image under examples of the five basic maps.
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Day 7. Symmetry.

• A linear map is a symmetry if it has a length factor of 1, i.e.

|F (A)| = |A| for all vectors A

It is a similarity if it has a length factor r other than 1.
Notice that the diation dilr is a similarity but a stretch strs,t
does not have a length factor if |s| and |t| are different. Show
that a skew map skb also does not have a length factor.
• Show that the composition of two symmetries is a symmetry.
• Show that a similarity preserves the angles between vectors.

In other words, if the angle between A and B is θ, then the
angle between F (A) and F (B) is also θ.
• Show that every symmetry is either a rotation or reflection.
• Suppose S ⊂ R2 is a subset of the plane and F is a symmetry.

We say that F is a symmetry of S if F (S) = S. Let P4 be
the (rotated) square with vertices: (1, 0), (0, 1) (−1, 0), (0,−1).
There are 8 symmetries of P4 (counting id). Find them all.
• The set of symmetries of S is a group; they are closed under

compositions and inverses. Make an 8×8 composition table for
the group of symmetries of P4.
• Do the same for P3, the equilateral triangle with one vertex at

(1, 0) centered at the origin (what are the other vertices?).
• The dihedral group D2n is the group of symmetries of the

regular n-gon Pn with a vertex at (1, 0) centered at the origin.
How many elements does D2n have? What do they look like?
• The cyclic group Cn is the subgroup of D2n consisting of all

rotational symmetries of the n-gon Pn. Show that the set of
reflectional symmetries of Pn is not a group.
• A set of elements generates a group if everything in the group

is a composition of those elements. The cyclic group Cn is
generated by one element, namely x = rot 2π

n
because all the

rotational symmetries of Pn are powers of x. Show that this x
together with y = ref0 (across the x-axis) generate D2n. In fact,
show that the following list of elements is D2n:

id, x, x2, ...., xn−1, y, xy, x2y, ..., xn−1y

• An equation satisfied by the generators is a relation. E.g.

xn = id and y2 = id

because rotating n times and reflecting twice give the identity.
But there is one more relation in D2n. Check that yx = x−1y
and redo the composition tables for D8 and D6 with algebra.
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Day 8. Affine Transformations.

• The translation by the vector V = (v1, v2) is the map:

TV (x, y) = (x+ v1, y + v2)

This is not linear because it translates the origin, but it does
map vectors to vectors (by the identity map!) so it has a length
factor of 1 and it preserves angles, i.e. it is a symmetry. Check:

TV ◦ TW = TV+W

and conclude that translations commute with each other.
• An affine map is a linear map followed by a translation:

(TV ◦ F )(x, y) = xA+ yB + V =

[
a1x+ b1y + v1
a2x+ b2y + v2

]
Translations do not commute with linear maps. Instead:

(F ◦ TV )(x, y) = (TF (V ) ◦ F )(x, y)

so F ◦ TV is another affine map (with a different translation).
• Show that:

(a) (TV ◦ F ) ◦ (TW ◦G) = TV+F (W ) ◦ (F ◦G) and
(b) TF−1(−V ) ◦ F−1 is the inverse of TV ◦ F .
and conclude that the set of affine maps is a group.

• The map TP ◦F ◦T−P translates P to 0, lets F do its thing and
then translates back. Discuss the fact that:

TP ◦ rota ◦ T−P = rotP ;a

is the rotation around P by the angle a, and that:

TQ ◦ refb ◦ T−Q = refQ;b

is the reflection across the line through Q at angle b.
• Given P and F , solve for V so that:

TV ◦ F = TP ◦ F ◦ T−P
and conclude that maps of this type are affine maps!
• Given V and a 6= 0, find the (unique!) point P so that:

rotP ;a = TV ◦ rota

so composing rotation by a with a translation is always rotation
by a around another point. What goes wrong when a = 0?
• Given angles a, b and points P,Q, solve for R so that:

rotP ;a ◦ rotQ;b = rotR;a+b

(this is messy!)
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Day 9. Reflections and Glides

• When a reflection across a line through Q is written in the form:

refQ;b = TW ◦ refb

as an affine map, then the translation vector is W = Q−refb(Q).
Show that this is perpendicular to the line of reflection.
• Conversely, suppose W is perpendicular to the line of reflection

(i.e. the angle of W is π
2

+ b). Show that TW ◦ refb = ref 1
2
W ;b

Definition. A glide reflection is an affine map of the form

TU ◦ refQ,b

where U is parallel to the line of reflection (i.e. its angle is b).

• Given V and b, write V = U +W where W has angle π
2

+ b and
U has angle b and conclude that TV ◦ refb is a glide reflection!

Taking Stock. Every affine symmetry is one of the following:
(a) A translation TV .
(b) A rotation by angle a around a point P (rotP ;a)
(c) A reflection across a line L with angle b (refQ;b for Q ∈ L).
(d) A glide reflection TU ◦ ref 1

2
W ;b

Note. Even though reflection across L is a glide reflection with
U = 0, it is useful to distinguish it from the true glides.

• Since these are the only affine symmetries, it follows that when
we compose two of them, we get another. We’ve see that:

TV ◦ TW = TV+W and rotP ;a ◦ rotQ;b = rotR;a+b

(and that we can solve for R!) Describe the compositions of:
(i) Reflections across intersecting lines.
(ii) Reflections across parallel lines.
(iii) Reflection and rotation around a point on the line.
(iv) Reflection and rotation around a point not on the line.
(v) Glide reflections (intersecting and parallel)
(vi) Glide reflections and rotations.

• Find affine symmetry groups of triangles and parallelograms.
• Two triangles are congruent if there is an affine symmetry

taking the first to the second. Show that two triangles are
congruent if and only if their side lengths are the same.
• Two triangles are similar if there is an affine “similarity” (the

composition of a dilation with an affine symmetry) taking the
first to the second. Show that two triangles are similar if and
only if their angle measurements are the same.
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Day 10. Wallpaper Groups.

• A wallpaper group is the group of affine symmetries of a pattern
in the plane that repeats itself in two independent directions.
• Find the wallpaper group for graph paper (pattern of squares).

Note. The Wiki page for wallpaper groups explains how to
indicate rotations, reflections and glide reflections on a single
square to indicate all the affine symmetries.
• Find the wallpaper group for equilateral triangle graph paper.
• Find the wallpaper group for rhombus graph paper.
• Find the wallpaper group for rectangular/kite graph paper.
• Find the wallpaper group for regular trapezoidal graph paper.

Every wallpaper group is a subgroup of the group of affine
symmetries of either square or triangular graph paper.
One can “break” the symmetry to find the subgroup by drawing
a figure inside the square (or triangle).
• Break symmetry to find the 17 different wallpaper groups(!)
• Explain the names of the groups.
• Investigate the frieze groups.

Further Possibilities.

• Art and wallpaper.
• Complex Möbius transformations.
• Real projective transformations.
• Projective geometry (axioms and properties).
• Hyperbolic geometry (with symmetries).See Escher.
• The Platonic solids and Schläfli four-dimensional solids.

(What are their symmetry groups?)
• Coxeter reflection groups and their Dynkin diagrams.
• Wallpaper and frieze groups in three dimensions.

(What are the symmetries of cubical graph paper?)
• Penrose tilings.


