1. (a) Find the general solution $u(x, t)$ of the following equation

 $u_t + tu_x = 0 \quad (-\infty < x < \infty, \ t > 0)$.

 (b) Find the solution of this equation satisfying the initial condition

 $u(x, 0) = \begin{cases}
 4 & \text{if } |x| < 2, \\
 0 & \text{otherwise}
 \end{cases}$

 (c) Sketch the solution for three values $t = 0, 1, 2$.

2. Find the frequencies of sound produced by an organ pipe (of length L) open at both ends. The dynamics of air in the pipe is described by the boundary value problem

 $u_{tt} = c^2 u_{xx}$,

 $u(0, t) = 0, \quad u(L, t) = 0$

 for the pressure variation $u = p - p_0$; $p = p(x, t)$ is the pressure in the pipe, p_0 is the atmospheric pressure.

 What is the fundamental mode?

 Will its sound become higher or lower if the pipe is played in water (instead of air)?

 [For reference, the values of sound speed are: in air $340 m/s$, in water $1500 m/s$]

3. Solve the boundary value problem

 $u_{tt} = c^2 u_{xx}$,

 $u(0, t) = u(L, t) = 0$,

 $u(x, 0) = \sin \frac{\pi}{L} x, \quad u_t(x, 0) = \frac{1}{10} \sin 3 \frac{\pi}{L} x$.

 [No integration is needed to solve this problem.]

4. Consider the wave equation $u_{tt} = c^2 u_{xx}$ on the entire line $-\infty < x < +\infty$, with initial conditions

 $u(x, 0) = \begin{cases}
 4 & \text{if } |x| < 2, \\
 0 & \text{otherwise}
 \end{cases} \quad u_t(x, 0) = 0$

 Taking $c = 10$, sketch $u(x, t)$ for three values $t = 0, 1, 2$.

5. Consider cooling of a potato. Its temperature $u(x, y, z, t)$ obeys the following boundary value problem

 $u_t = c^2 \left(u_{xx} + u_{yy} + u_{zz} \right) \quad (x^2 + y^2 + z^2 < a^2)$,

 $u(x, y, z, t) = 0 \quad \text{if } x^2 + y^2 + z^2 = a^2$,

 $u(x, y, z, 0) = M \ (= 100^\circ C) \quad \text{if } x^2 + y^2 + z^2 < a^2$,

 a is the radius of the potato.

 (a) Find the temperature $u(x, t)$ of the potato for $t > 0$.

 (b) Sketch a few snapshots of the temperature as a function of x [at different fixed values of time].

 (c) Estimate time t_0 when the maximal temperature in the potato is 50°.
6. Consider heat propagation in a completely insulated bar (its lateral sides and both ends are insulated). The temperature dynamics is described by the following boundary value problem

\[u_t = c^2 u_{xx}, \]
\[u_x(0, t) = 0, \quad u_x(L, t) = 0. \]

Derive from these equations that the quantity

\[Q = \int_0^L u(x, t) \, dx \]

(which is proportional to the total heat energy inside the bar) is conserved.

7. Solve the initial value problem

\[u_{tt} + u_{xxxx} = 0, \quad u(x, 0) = e^{-\frac{ax^2}{2}}, \quad u_t(x, 0) = 0 \quad (-\infty < x < \infty); \]

\[a \] is a positive parameter.

8. The solution \(u(x, t) \) of the initial value problem for the heat equation

\[u_t = c^2 u_{xx}, \quad u(x, 0) = f(x) \quad (-\infty < x < \infty, t > 0) \]

is given by the integral

\[u(x, t) = \int_{-\infty}^{\infty} G(x - s, t) f(s) \, ds \quad \text{with} \quad G(x, t) = \frac{1}{\sqrt{4\pi c^2 t}} e^{-\frac{x^2}{4c^2 t}} \]

(Section 7.4, Theorem 1, Formula (4), Page 421).

(a) Show that the solution of the boundary value problem

\[u_t = c^2 u_{xx} \quad (x > 0, t > 0), \quad u(0, t) = 0 \quad \text{(fixed zero 1 temperature at the end)}, \quad u(x, 0) = f(x) \quad \text{(initial temperature)} \]

can be found by the integral

\[u(x, t) = \int_0^\infty [G(x - s, t) - G(x + s, t)] f(s) \, ds \]

(b) Show that the solution of the boundary value problem

\[u_t = c^2 u_{xx} \quad (x > 0, t > 0), \quad u_x(0, t) = 0 \quad \text{(insulated end)}, \quad u(x, 0) = f(x) \quad \text{(initial temperature)} \]

can be found by the integral

\[u(x, t) = \int_0^\infty [G(x - s, t) + G(x + s, t)] f(s) \, ds \]

[Hint: Use the method of images]

9. Estimate the age of the earth [under the assumption that there are no heat sources inside the earth and no convection]. Assume that

- initially the earth has temperature of the melted rock, \(M = 2000^\circ C \);
- \(c^2 = 1.2 \times 10^{-6} \frac{m^2}{s} \);
- the temperature of the surrounding atmosphere has always been \(0^\circ C \);
- current value of geothermal gradient is \(\alpha = 0.037 \frac{^\circ C}{m} \).