Problem 1. Least square solution.
Consider a linear system
\[Ax = b \]
with \(m \) equations and \(n \) unknowns (\(A \) is a \(m \times n \)-matrix, \(b \) is a \(m \)-vector, and \(x \) is a \(n \)-vector). If \(m > n \), this system is over-determined and is likely to have no exact solution. So, we look for the best approximate solution \(x_0 \), that minimizes the distance
\[||Ax - b||. \]
1. Show that \(x_0 \) is obtained as solution of the linear system \(A^T A x_0 = A^T b \).
 \text{Suggestion:} \text{Consider } x = x_0 + z \text{ and show that}
 \begin{align*}
 ||Ax - b||^2 &= [A(x_0 + z) - b]^T [A(x_0 + z) - b] \\
 &= [Ax_0 - b]^T [Ax_0 - b] + [Az]^T [Az]

 \end{align*}
2. What is the size of matrix \(A^T A \)?
3. Show that \(A^T A \) is a symmetric matrix.
4. Show that \(A^T A \) is a semi-positive-definite matrix.
5. Is \(A^T A \) always positive-definite?

Problem 3. Let \(A \) be an \(n \times n \) matrix. Prove:
A set of its eigenvectors \(v_1, v_2, \ldots, v_k \) (\(k \leq n \)) — corresponding to distinct eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_k \) — is linearly independent.

Problem 4.
1. Prove: If an \(n \times n \) matrix \(A \) has full set of \(n \) real eigenvectors, then it is similar to the diagonal matrix (i.e. there is a non-singular matrix \(S \) and there is a diagonal matrix \(\Lambda \) such that \(A = SAS^{-1} \)).
2. What is \(S \)? What is \(\Lambda \)?
3. Give an example of a matrix that does not have a full set of real eigenvectors, but has a full set of complex eigenvectors.
4. Give an example of a matrix that does not have a full set of complex eigenvectors.