(2) Let \(f : X \to Y \) be a function, and let \(A \subseteq Y \).

(a) Prove that \(f(f^{-1}(A)) \subseteq A \).

To prove that \(f(f^{-1}(A)) \subseteq A \), we need to prove that every element of \(f(f^{-1}(A)) \) is also an element of \(A \). Let \(y \in f(f^{-1}(A)) \). Then there exists \(x \in f^{-1}(A) \) such that \(f(x) = y \). Since \(x \in f^{-1}(A) \), we have that \(y = f(x) \in A \).

(b) True/False: If \(f \) is one-to-one, then \(f(f^{-1}(A)) = A \).

FALSE. Let \(f : \mathbb{R} \to \mathbb{R}, f(x) = e^x \), and let \(A = [-1, \infty) \). Then \(f^{-1}(A) = \mathbb{R} \), and \(f(f^{-1}(A)) = f(\mathbb{R}) = (0, \infty) \neq A \).

(3) Let

\[
E = \left\{ \frac{6n + 1}{2n} \mid n \in \mathbb{N} \right\}.
\]

(a) Find \(\inf E \) and \(\sup E \).

\(\inf E = 3 \) and \(\sup E = 7/2 \).

(b) For \(\inf E \), prove that the number you found in part (a) is indeed the infimum of \(E \).

The sequence

\[
x_n = \frac{6n + 1}{2n} = 3 + \frac{1}{2n}
\]

converges to 3 as \(n \to \infty \). Moreover, it is a decreasing sequence because \(1/(2n) \) is decreasing. By the Monotone Convergence Theorem, \(x_n \) converges to \(\inf E \), and therefore \(\inf E = 3 \).

(4) (a) Using the definition of convergence of a sequence, prove that, if \(x_n \to 4 \), then \(x_n^2 \to 16 \).

We need to prove that, for every \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(|x_n^2 - 16| < \varepsilon \) for all \(n \geq N \). Since we know that \(x_n \to 4 \), we want to relate \(|x_n^2 - 16| \) to \(|x_n - 4| \). The relation is

\[
|x_n^2 - 16| = |x_n - 4||x_n + 4|.
\]

The idea of the proof is that the first term on the right hand side of the equation is \(< \varepsilon \) if \(n \) is “big enough” and the second term is bounded because \(x_n \) converges. Here is a precise proof. Since \(x_n \to 4 \), \(\{x_n\} \) is bounded. Therefore, \(\{x_n + 4\} \) is bounded, and there exists a constant \(C > 0 \) such that \(|x_n + 4| < C \) for all \(n \in \mathbb{N} \). Since \(x_n \to 4 \), for \(\varepsilon/C > 0 \) there exists \(N \in \mathbb{N} \) such that \(|x_n - 4| < \varepsilon/C \) for all \(n \geq N \). Therefore,

\[
|x_n^2 - 16| = |x_n - 4||x_n + 4| < \frac{\varepsilon}{C} \cdot C = \varepsilon
\]

for all \(n \geq N \).

(b) True/False: If \(x_n \to 4 \), then \(\sqrt{x_n} \) is well-defined for \(n \) big enough (i.e., there exists \(N \in \mathbb{N} \) such that \(x_n \geq 0 \) for all \(n \geq N \)), and \(\sqrt{x_n} \to 2 \).

TRUE. Since \(x_n \to 4 \), \(x_n \) is a number close to 4 for \(n \) big enough, and therefore \(x_n \geq 0 \) if \(n \) is big enough. Moreover, since \(x_n \geq 0 \), \(\sqrt{x_n} \) is well-defined if \(n \) is big enough. As \(x_n \) approaches 4, \(\sqrt{x_n} \) approaches \(\sqrt{4} = 2 \).

(5) True/False: If a sequence \(\{x_n\} \) satisfies the condition that \(x_{n+1} = 1 + \sqrt{x_n - 1} \) for all \(n \in \mathbb{N} \), then \(x_n \to 2 \).

FALSE: Let \(x_1 = 1 \). Then \(x_2 = 1 + \sqrt{1-1} = 1 \), \(x_3 = 1 + \sqrt{1-1} = 1 \), and so on. For each \(n \), \(x_n = 1 + \sqrt{1-1} = 1 \), and \(x_n \to 1 \).