MATH 2210 - Limits of Multivariable Functions

Summary: Give a function \(f(x, y) \), we want to calculate the limit
\[
\lim_{(x, y) \to (0, 0)} f(x, y).
\]

- We have studied two ways to show that the limit does not exist:
 - Find two lines for which the limits of \(f(x, y) \) along those two lines exist and they are different from each other.
 - If all the lines give you the same limit, substitute a function of \(x \) for \(y \) (or a function of \(y \) for \(x \)) in order to obtain a limit which is different from the limits along lines.

- To show that the limit does exit, we have also studied two ways:
 - Find a function \(g(x, y) \) such that
 \[
 0 \leq |f(x, y)| \leq |g(x, y)| \quad \text{for every } x, y,
 \]
 and show that
 \[
 \lim_{(x, y) \to (0, 0)} g(x, y) = 0.
 \]
 - Change \(f(x, y) \) into polar coordinates, and show that the limit as \(r \to 0 \) exists no matter what \(\theta \) is.

Calculate the following limits or show that they do not exist:

\[
\begin{align*}
\lim_{(x, y) \to (0, 0)} \frac{x + 2y^2}{3x^2 + 2y^2} & \quad \lim_{(x, y) \to (0, 0)} \frac{2x^3y^2}{x^6 + y^4} \\
\lim_{(x, y) \to (0, 0)} \frac{xy}{\sqrt{3x^2 + 2y^2}} & \quad \lim_{(x, y) \to (0, 0)} \frac{x^2y}{3x^2 + 2y^2} \\
\lim_{(x, y) \to (0, 0)} \frac{x^2y}{x^4 + 3y^2} & \quad \lim_{(x, y) \to (0, 0)} \frac{3x^3 + 2\sqrt{y}}{x^2 + y^2} \\
\lim_{(x, y) \to (0, 0)} \frac{-3x^3 - y^2}{3x^3 + 2y^2} & \quad \lim_{(x, y) \to (0, 0)} \frac{x^4 + y^4}{x^2 + 3y^2} \\
\lim_{(x, y) \to (0, 0)} \frac{x^2y^5}{2x^4 + 3y^{10}} & \quad \lim_{(x, y) \to (0, 0)} \frac{x^2y^2}{2x^2 + 3y^4}
\end{align*}
\]