1 Integrale

Given a derivative, \(f'(x) \), the process of finding the function \(f(x) \) is called \textit{antidifferentiation} or \textit{integration}. The most general function \(f(x) \) is called the \textit{integral} or \textit{indefinite integral} of \(f'(x) \), and we write \(\int f'(x) \, dx = f(x) \).

Examples

Find each of the following:

1. \(\int 4x^3 \, dx = x^4 + C \), where \(C \) represents a general constant.
2. \(\int x^6 \, dx = \frac{x^7}{7} + C \)

Powers of \(x \) Formula: \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) for \(n \neq -1 \).

Examples

Calculate and simplify each of the following:

1. \(\int x^2 \, dx = \frac{x^3}{3} + C \)
2. \(\int \sqrt{x} \, dx = \int x^{1/2} \, dx = \frac{2x^{3/2}}{3} + C \)
3. \(\int \frac{1}{x^2} \, dx = \int x^{-3} \, dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C \)

2 Properties

There are many general properties of integrals. Let \(c \) and \(C \) represent constants:

1. \(\int cu(x) \, dx = c \int u(x) \, dx \)
2. \(\int (u(x) \pm \nu(x)) \, dx = \int u(x) \, dx \pm \int \nu(x) \, dx \)
3. \(\int 1 \, dx = x + C \)
4. \(\int 0 \, dx = C \)

Examples

1. \(\int (3 + 2x^2) \, dx = 3x + \frac{2}{3}x^3 + C \)
2. \(\int (4 - \frac{1}{\sqrt{x^2}}) \, dx = \int (4 - x^{-2/3}) \, dx = 4x - 3x^{1/3} + C \)
3. \(\int \left(\frac{3}{x^2} - \frac{16}{\sqrt{x}} \right) \, dx = \int (3x^{-9} - 16x^{-1/5}) \, dx = -\frac{3}{8}x^{-8} - 20x^{4/5} + C \)

4. The marginal revenue for a product is \(\overline{MR} = -0.5x + 60 \). Find \(R(x) \).

\[
R(x) = \int (-0.5x + 60) \, dx = -0.25x^2 + 60x + C.
\]

Using that \(R(0) = 0 \), we see that \(C = 0 \), so \(R(x) = -0.25x^2 + 60x \).