Odd perfect numbers

Final report Summer Independent REU

By Tim Anderton
Under the direction of Don H. Tucker

SOME DEFINITIONS

DIVISOR SIGMA $\sigma(n)$

Let the factorization of a number n be represented by $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$ where each p is a distinct prime. For this paper we define the divisor sigma as

$$
\begin{equation*}
\sigma(n) \equiv \prod_{i=1}^{m} \sum_{j=0}^{a_{i}} p_{i}^{j} . \tag{1}
\end{equation*}
$$

Notice that the divisor sigma is equivalent to the sum of the integer divisors of n including 1 and n itself. The Sigma function is a multiplicative function which means that $\sigma(a b)=\sigma(a) \sigma(b)$ when a and b share no common factors.

PERFECT NUMBER

A perfect number is one that satisfies the relation

$$
\begin{equation*}
\sigma(n)=2 n . \tag{2}
\end{equation*}
$$

LEAST PRIME Y

Y is the smallest prime number in the factorization of n.
CO-PRIME RESIDUAL OF n, k
k is the integer such that $n=Y^{a} k$.

ODD PERFECT NUMBER

An odd perfect number is an n that satisfies (2) and is such that $Y \neq 2$.
We note that

$$
\begin{equation*}
\frac{2 k}{\sigma(k)}=Y^{-a} \sigma\left(Y^{a}\right) \tag{3}
\end{equation*}
$$

And because y is of the form of the power of a prime its sigma is of the form $\sigma\left(y^{a}\right)=\left(1+y+\ldots+y^{a}\right)$ allowing us to simplify equation (3) to

$$
\begin{equation*}
\frac{2 k}{\sigma(k)}=\sum_{i=0}^{a} Y^{-i} . \tag{4}
\end{equation*}
$$

We can limit the range of equation 4 by noting that.

$$
\begin{equation*}
1<\frac{2 k}{\sigma(k)}<\frac{1}{1-Y^{-1}} . \tag{5}
\end{equation*}
$$

If k is prime and $\mathrm{Y}>2$ then $k \geq 5$ and $2 k / \sigma(k)=2 k /(k+1)$ monotonically approaches 2 . Therefore (2)(10)/(5+1)=10/6 forms a lower bound on the left hand side of equation (4) but if the ratio was $10 / 6$ then the inequality (5) would be violated since $3 / 2$ is the maximum the ratio can be for odd perfects and $(1-1 / 3)^{-1}=3 / 2<10 / 6$ Therefore there can be no odd perfect numbers with k prime.

Now let us consider a number whose form is $n=y^{a_{1}} x^{b}$ we know that.
$\frac{2 x^{b}}{\left(\sum_{i=0}^{b} x^{i}\right)}=\frac{2 x^{b}}{\left(\frac{x^{b+1}-1}{x-1}\right)}<3 / 2$ if n is an odd perfect number. To find the minimum value of this expression where $x \geq 5$ we take its derivative.
$\frac{d}{d x}\left(\frac{2 x^{b}}{\left(\frac{x^{b+1}-1}{x-1}\right)}\right)=\frac{d}{d x}\left(\frac{2\left(x^{b+1}-x^{b}\right)}{x^{b+1}-1}\right)=\frac{\left(2(b+1) x^{b}-2 b x^{b-1}\right)}{x^{b+1}-1}+\frac{-1(b+1) x^{b}}{\left(x^{b+1}-1\right)^{2}}\left(2\left(x^{b+1}-x^{b}\right)\right)$
which simplifies to $\frac{2 x^{b}\left(x^{b+1}-x(b+1)+b\right)}{x\left(x^{b+1}-1\right)^{2}}$.
Which is positive when $x^{b+1}+b>(b+1) x$, which is true for all $\mathrm{x}>1$.

Therefore we can conclude that the ratio $2 k /(k)$ is monotonically increasing with increasing x so its minimum is at the endpoint where x is least. To show that there can be no odd perfect numbers of this form then we need only show that

$$
\begin{equation*}
\frac{8\left(5^{b}\right)}{5^{b+1}-1}>3 / 2 \tag{6}
\end{equation*}
$$

for all $b>1$. We simply note that $\frac{8\left(5^{b}\right)}{5^{b+1}-1}=\frac{8}{5-1 / 5^{b}}>\frac{8}{5}>\frac{3}{2}$. We conclude that there can be no odd perfect numbers composed only of the powers of two unique primes.

In general we can factor out all but one prime yielding

$$
\begin{equation*}
Y^{\left(-a_{1}\right)} \sigma(Y) k^{-1} x_{\mathrm{m}}^{\left(a_{m}\right)}=2 x_{\mathrm{m}}^{\left(a_{\mathrm{m}}\right)} / \sigma(k) \tag{7}
\end{equation*}
$$

Since sigma is multiplicative we can split the right hand side of (7) into $\frac{2 x_{m}^{a_{m}}}{\sigma\left(x_{m}^{a_{m}}\right)} \sigma\left(\frac{k}{x_{m}^{a_{m}}}\right)^{-1}$.
We know that k cannot be abundant because if it were then it would also violate inequality (5) since the ratio would be less than 1 . Thus we can express the inequalities (8) and (9).

$$
\begin{equation*}
\frac{3}{2} k^{-1} x_{m}^{a_{m}}<Y^{-a_{1}} \sigma(Y) k^{-1} x_{m}^{a_{m}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{8}{5} \sigma\left(\frac{k}{x_{m}^{a_{m}}}\right)^{-1}>\frac{2 x_{m}^{a_{m}}}{\sigma\left(x_{m}^{a_{m}}\right)} \sigma\left(\frac{k}{x_{m}^{a_{m}}}\right)^{-1} \tag{9}
\end{equation*}
$$

We can see that $\frac{3}{2} k^{-1} x_{m}^{a_{m}}<\frac{8}{5 \sigma\left(\frac{k}{x_{m}^{a_{m}}}\right)}$ must be true if there is a solution to equation 6.
Reorganizing a little bit we come out with the inequality (10)

$$
\begin{equation*}
k^{-1} x_{m}^{a_{m}} \sigma\left(\frac{k}{x_{m}^{a_{m}}}\right)<\frac{16}{15} \tag{10}
\end{equation*}
$$

We can rewrite the left hand side of (10) as (11).

$$
\begin{equation*}
\frac{\sigma(k)}{k} x_{m}^{a_{m}}\left(\frac{x_{m}-1}{x_{m}^{a_{m}+1}-1}\right)=\frac{\sigma(k)}{k}\left(\frac{x_{m}^{a_{m}+1}-x_{m}^{a_{m}}}{x_{m}^{a_{m}+1}-1}\right) \tag{11}
\end{equation*}
$$

The minimum of the x dependent part is $24 / 25$ the minimum of sigma of k over k is 1 .
Therefore odd perfect numbers if they exist must be such that.

$$
\begin{equation*}
\frac{24}{25}<\frac{\sigma(k)}{k}\left(\frac{x_{i}-1}{x_{i}^{a_{i}+1}-1}\right)<\frac{16}{15} \tag{12}
\end{equation*}
$$

