Problem 1: The Water Dilemma

I have $\mathbf{2}$ containers of water, each with identical volume V. Container A is at a temperature of 273 K , and Container B is at a temperature of 373 K .

I want to cool Container B to as low of a temperature as possible.
There are $\mathbf{2}$ tools that I can use to cool Container B:

1) I can split Container A into any finite number of sub containers $\{A 1, A 2, \ldots, A n\}$ with volumes $\{\mathrm{V} 1, \mathrm{~V} 2, \ldots, \mathrm{Vn}\}$ such that $\sum_{i=1}^{n} V_{\boldsymbol{n}}=V$
2) I can bring any sub container of A into thermal equilibrium with Container B and then separate them.

For example, I can split A into 2 containers of equal volume $\mathrm{V} / 2$. Then bring one of these sub containers into contact with Container B, and allow them to reach equilibrium (which is ~339.667 K). I can then separate them, and bring the second sub container into contact with Container B. This will lower Container B's temperature to ~317.444 K.

To how low of a Temperature can Container B be cooled?

Note: The Equilibrium Temperature T_{f} reached when 2 boxes are placed in thermal equilibrium is a volume-weighted average of the temperature of both containers, following the equation

$$
T_{f}=\frac{T_{A} V_{A}+T_{b} V_{b}}{V_{T}}
$$

This formula assumes a constant specific heat of water between 273- and 373-degrees Kelvin. (which you can also, definitely assume for this problem!)

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The Theorem states that for any cyclic quadrilateral $A B C D$, the product of the lengths of its diagonals is equal to the sum of the products of the lengths of the pairs of the opposite sides:

Prove that Ptolemy's Theorem is true and show that the Pythagorean Theorem follows as a direct result.

Problem 3: The Mean Problem

Prove the Arithmetic Mean - Geometric Mean (AM-GM) Inequality, which states:
If $x_{1}, x_{2}, \ldots, x_{n} \geq 0, x \in \mathbb{R}, n \in \mathbb{N}$ then

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

With equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$

